Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts

Authors:
Logan Christenson and Ronald C. Sims

Journal:
Biotechnology Advances

Abstract:
The integration of microalgae-based biofuel and bioproducts production with wastewater treatment has major advantages for both industries. However, major challenges to the implementation of an integrated system include the large-scale production of algae and the harvesting of microalgae in a way that allows for downstream processing to produce biofuels and other bioproducts of value. Although the majority of algal production systems use suspended cultures in either open ponds or closed reactors, the use of attached cultures may offer several advantages. With regard to harvesting methods, better understanding and control of autoflocculation and bioflocculation could improve performance and reduce chemical addition requirements for conventional mechanical methods that include centrifugation, tangential filtration, gravity sedimentation, and dissolved air flotation. There are many approaches currently used by companies and industries using clean water at laboratory, bench, and pilot scale; however, large-scale systems for controlled algae production and/or harvesting for wastewater treatment and subsequent processing for bioproducts are lacking. Further investigation and development of large-scale production and harvesting methods for biofuels and bioproducts are necessary, particularly with less studied but promising approaches such as those involving attached algal biofilm cultures.

Citation:

Christenson, L. & Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29, 686–702 (2011).

Link to paper