Dr. Wade Goodridge is developing ways to teach the fundamentals of engineering to students who are blind or low vision.

Experts have shown that spatial ability is highly correlated to success in both engineering students and practicing engineers. With under-developed spatial ability skills, students may struggle to mentally construct the engineering problems presented in the classroom. Goodridge says students have varying levels of spatial ability but says improvement is possible through training and exercise. Assessing and improving spatial ability in a student who is blind or low vision represents a unique challenge in spatial cognition research — but one Goodridge says is crucial for removing barriers that keep students from pursuing science, technology, engineering and math (STEM) careers.

“Since we know that spatial ability is a strong indicator of success in STEM education and STEM professions, we need to understand how it is developed in our blind youth and how they utilize it in solving engineering problems,” said Goodridge. “We can then develop methods to leverage spatial thinking and help our students have better chances to succeed.”

Goodridge is a leading expert in spatial cognition and has published several studies on how to measure and improve spatial cognition. He and his team will use the funding to develop an existing technology used to measure spatial ability in blind and low vision people. His team will also create new engineering-based curricula designed to improve spatial ability.
Experts say many blind people struggle with mental mapping primarily because they do not have access to educational opportunities. Photo: NFB

Experts say many blind people struggle with mental mapping primarily because they do not have access to educational opportunities that foster development of spatial cognition skills. Among the STEM disciplines, engineering relies most heavily on spatial reasoning skills.

“A combination of lack of knowledge about nonvisual techniques and society’s low expectations for the blind prevents too many blind youth from developing spatial reasoning skills and, if they desire, participating in engineering or other fields that use these skills,” said Mark A. Riccobono, President of the National Federation of the Blind. “We have dedicated significant resources to changing this unacceptable status quo, and we thank the National Science Foundation and our partners at Utah State and the Science Museum of Minnesota for helping us accelerate our progress and broaden our reach.”

This material is based upon work supported by the National Science Foundation under Grant No. 1712887.

###

EXPERT CONTACT:

Dr. Wade Goodridge, Utah State University, Department of Engineering Education, wade.goodridge@usu.edu | office: 435-797-9051

MEDIA CONTACTS:

Matt Jensen, Director of Public Relations, Utah State University, College of Engineering | matthew.jensen@usu.edu | office: 435-797-8170 | cell: 801-362-0830 | engineering.usu.edu |

Chris Danielsen, Director of Public Relations, National Federation of the Blind cdanielsen@nfb.org | office: 410-659-9314, extension 2330 | cell: (410) 262-1281