News Release — LOGAN, UTAH — Aug 23, 2018 —
In the United States, we’ve accumulated an estimated
500 million specimens of animals, plants, bugs and
mushrooms. The specimens are an important resource for
scientists, but only 15 percent of the giant collection has
been digitized for use in our modern, connected world.

The software is a popular tool used by museums and
herbaria. But the program isn’t perfect.

“Symbiota was created about 15 years ago, and since
then, software development has changed so much,” he
added. “We’re going to completely revamp it.”

A Penstemon cyananthus Hook from the Intermountain
Herbarium. Millions of biological specimens have not been
digitized for use in modern database systems.

The updated software, dubbed Symbiota2, will work on
mobile devices and will feature new web compatibility
services and the latest plugin architecture. Symbiota2
will also feature an improved layout that conforms to best
practices outlined by the Americans with Disabilities Act.
Another improvement is the addition of a feature called
‘Auto Awesome.’

“Auto Awesome is a function that was introduced years
ago by the Google Photo Assistant,” said Dyreson. “In our
application, we want to make Symbiota2 do certain things
to improve data analysis automatically.”

Dyreson is a database expert who’s worked on dozens
of life science applications. In June, he was awarded a
$780,000 National Science Foundation grant to oversee
the Symbiota2 project. Collaborators include USU
Department of Biology faculty Drs. Mary Barkworth and
Will Pearse and Northern Arizona University’s Dr. Neil
Cobb and Ben Brandt.

As Dyreson explains, it’s an ambitious project.

“There’s still a long way to go in digitizing all these
collections. Our goal is to increase the number of digitized

Computer scientist Curtis Dyreson is working with
biologists to revamp the biodiversity database tool
Symbiota.

Part of the problem is a lack of robust software tools that
can handle such a big job. This digital dilemma creates
a unique opportunity for collaboration among biologists
and computer scientists. USU’s Dr. Curtis Dyreson, an
associate professor of computer science who has more
than a decade of experience in bioinformatics, is leading
a major effort to overhaul Symbiota — one of the most
widely-used biodiversity database platforms in the world.

“Symbiota is an open source software tool used to create
and manage biological specimen data,” said Dyreson.
“Scientists use it to document specimens from around the
world.”
collections and improve data analysis. When more of these collections become digitized, scientists will have access to more data. With more data, we can start to uncover patterns and perform data analyses that were never possible before. We’ll be able to see how a species has changed over time. We’ll be able to see how climate change is impacting a species because we’ll have a larger digitized historical record of that species. But we can’t do any of that until we improve Symbiota.”

###

Research Contact: Professor Curtis Dyreson, 435-797-0742, Curtis.Dyreson@usu.edu

Media Contact: Matt Jensen – Utah State University, College of Engineering | matthew.jensen@usu.edu | office: 435-797-8170 |