National Media Turn to USU Engineering Professor for Developing Oroville Spillway Situation | College of Engineering

02/13/2017

News Release – LOGAN, UTAH – Feb. 13, 2017 – Reporters around the world are covering the developing story in Northern California where massive water flows are threatening the integrity of the Oroville Dam's main and auxiliary spillways.

For perspective on the emergency situation, media outlets, including The New York Times, are turning to Utah State University Professor Dr. Blake Tullis. Tullis is a professor of civil and environmental engineering and associate director of the Utah Water Research Laboratory.

USU's Dr. Blake Tullis is a leading expert on spillway design.

Tullis specializes in hydraulics and fluid mechanics and is a leading authority on spillway design. His particular focus includes increasing spillway discharge capacity at new and existing facilities through the use of nonlinear-weir spillways (e.g., labyrinth and piano key-type weir designs).

In 2016, Tullis was awarded the 2016 Terry L. Hampton Medal from the Association of State Dam Safety Officials. He has published 38 peer-reviewed journal publications, nine book chapters, two books and more than 55 peer-reviewed conference papers and presentations.

Tullis is frequently consulted for water engineering projects around the world. Recently, he and his team were commissioned by an international engineering firm to aid in the development of spillway designs for two new dams under construction in Malaysia – the Tekai dam (2015) and Susu dam (2013). In 2014, he was commissioned by the U.S. Army Corps of Engineers to aid in the development of a new auxiliary labyrinth weir spillway design for Isabella Dam located
in Kern County, Calif. The combination of the existing service spillway and the new emergency spillway will increase the overall discharge capacity by a factor of 10.

Nonlinear weirs are a recent innovation in dam construction that significantly improve discharge capacity, which in turn can be used to improve dam and public safety and increase non-flood reservoir water storage capacities. Increased reservoir storage without compromising dam safety is beneficial to the primary functions of the reservoir: increased hydropower output, increased irrigation, municipal, or industrial use water supply.

Members of the media are welcome to contact Dr. Tullis for expert insight into the ongoing situation at Oroville Dam.

###

Contact: Blake Tullis - Office: 435-797-3194 | Cell: 435-770-0822 | blake.tullis@usu.edu

Media Contact:
Matt Jensen – USU College of Engineering | matthew.jensen@usu.edu | office: +1-435-797-8170 | cell: +1-801-362-0830 | @EngineeringUSU | engineering.usu.edu

Recent News Coverage
- New York Times
- CNN
- The Wall Street Journal
- New York Times (update)
- The Wall Street Journal (update)