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ABSTRACT

Roadway-Embedded Transmitters and Multi-Pad Receivers for High Power Dynamic

Wireless Power Transfer

by

Benny J. Varghese, Doctor of Philosophy

Utah State University, 2021

Major Professor: Abhilash Kamineni, Ph.D.
Department: Electrical and Computer Engineering

Electric vehicles (EVs) offer considerable economic and environmental benefits to so-

ciety. Despite the decreasing vehicle costs and increasing range of newer EVs, the problem

of range anxiety still exists. Range anxiety, at its core, is an issue of charging speeds rather

than a concern about the driving range. Dynamic wireless charging of EVs is seen as a

potential solution to this issue of range anxiety. Wireless charging technology also helps the

push towards level 5 autonomy and opens new opportunities for how an EV can be utilized.

Dynamic wireless power transfer (DWPT) systems typically require a high initial in-

vestment due to the scale of deployment needed and require a certain level of EV adoption

before they become economically viable. The challenges facing DWPT technologies are

broadly categorized into development, deployment and operation challenges. To address the

deployment challenges, this dissertation explores the pavement integration of dynamic wire-

less chargers using existing roadway construction methods. A 50 kW concrete-embedded

DWPT system is built and tested. To improve infrastructure utilization and address the

operation challenge, different vehicle classes need to recharge from the same charging infras-

tructure. This is made possible by the use of multi-pad receivers. This dissertation presents



iv

the design of a 30 kW DWPT system using a receiver with three individual 11.1 kVA re-

ceivers to demonstrate the scalability of modular receivers.

To help further reduce the cost of development and implementation of DWPT systems,

finite element method (FEM) and circuit simulation models are presented. These time-

domain simulations can be used to develop and validate various control and communication

schemes without the need for expensive hardware implementation. Finally, leakage magnetic

field reduction to ensure safety and compliance for DWPT systems is discussed and an

example system is analyzed using FEM simulations.

(145 pages)
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PUBLIC ABSTRACT

Roadway-Embedded Transmitters and Multi-Pad Receivers for High Power Dynamic

Wireless Power Transfer

Benny J. Varghese

Electric vehicles (EVs) offer considerable economic and environmental benefits to so-

ciety. Despite the decreasing vehicle costs and increasing range of newer EVs, the problem

of range anxiety still exists. Range anxiety, at its core, is an issue of charging speeds rather

than a concern about the driving range. Dynamic wireless charging of EVs is seen as a

potential solution to this issue of range anxiety. Further, wireless charging technology also

helps the push towards level 5 autonomy and opens new opportunities for how an EV can

be utilized.

Dynamic wireless power transfer (DWPT) systems typically require a high initial in-

vestment due to the scale of deployment needed and require a certain level of EV adoption

before they become economically viable. The challenges facing DWPT technologies are

broadly categorized into development, deployment and operation challenges. To address

the deployment challenges, this dissertation presents the pavement integration of DWPT

systems, and the design and validation of concrete-embedded wireless charging pads. To im-

prove infrastructure utilization and address the operation challenge, different vehicle classes

need to recharge from the same charging infrastructure. This is made possible by the use

of multi-pad receivers, which allow different vehicle classes to receive different power lev-

els using the same charging infrastructure. This work presents a scaled-down version of a

multi-pad receiver system to demonstrate the operation and scalability of these modular

receivers.

To help further reduce the cost of development and implementation of DWPT systems,

finite element method (FEM) and circuit simulation models are presented. The time-domain
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simulations can be used to develop and validate various control and communication schemes

without the need for expensive hardware implementation. Finally, leakage magnetic field

reduction to ensure safety and compliance for DWPT systems is discussed, and an example

system is analyzed using FEM simulations.
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CHAPTER 1

INTRODUCTION

1.1 Background

In 2019, transportation accounted for 28% of the total energy consumption of the

United States (U.S.). Approximately 91% of this energy demand is fulfilled using petroleum

sources and powers internal combustion engine (ICE) vehicles, leading to a significant

amount of tailpipe emissions [12]. This can be seen in a visual representation of the 2019

U.S. energy consumption by source and sector as shown in Fig. 1.1. With the U.S. gov-

ernment setting aggressive climate change goals and targeting a reduction in greenhouse

gases [13], electric vehicles (EVs) are seen as a key component in the global effort to im-

prove air quality [14]. Electric vehicles (EVs) are considered a paradigm-shifting technology

due to their untapped potential for environmental and economical impact. Regardless of

how the electricity for EVs is produced, EVs have a significantly higher energy efficiency

than traditional gasoline-powered vehicles. Data obtained from Oak Ridge National Lab

and Idaho National Lab estimate EVs to have an energy efficiency of 77% and traditional

ICE vehicles a 12-30% energy efficiency [15]. This shows that the total energy required

by the transportation industry in the U.S. can be cut by 62% to 85% if all the gasoline

powered transportation is converted to electric.

1.1.1 The Need for Transportation Electrification

Societal Benefits

On a societal level, mass adoption of EVs and transportation electrification improves

the air quality in and around areas of high population density. Typically these population

centers suffer from poor air quality issues due to the high concentration of vehicular traffic.
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Fig. 1.1: U.S. energy consumption by source and sector in 2019 [4].

While ICE vehicles are not the only cause of poor air quality in urban population centers,

tailpipe emissions are considered to be a major contributor [5].

Higher market penetration of EVs and alternate fuel vehicles (bio-diesel, natural gas,

hydrogen etc.) provides the economy with much needed diversification in transportation

energy consumption. In the United States for instance, with transportation accounting for

a major portion of the energy consumption needs, a gradual shift to EVs helps balance the

energy pie chart shown in Fig. 1.2 and move away from petroleum products. A wide variety

of sources are available for the generation of electricity, including coal, natural gas, nuclear,

solar, and wind. This can help countries reduce their reliance on the global supply of crude

oil.
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Fig. 1.2: U.S. energy sources used by the transportation sector in 2019 [4].

Benefits of EV Ownership

Companies and individuals who own EVs can expect significant short-term and long-

term benefits. Studies [16] indicate that fleet electrification helps companies reduce total

cost of ownership in addition to achieving their sustainability and environmental goals.

Further, they provide a hedge against fluctuating oil prices and future national and interna-

tional policy regulations [17]. This in turn helps companies reduce some of the uncertainty

in estimating future growth and profits [17,18].

EVs offer the benefit of custom range vehicles based on the application they’re being

used for. For instance, a delivery truck in a dense urban location such as Manhattan driving

an average of 18-20 miles a day can be designed with a lighter battery pack, reducing vehicle

cost and increasing the weight capacity.

On an individual level, EV ownership provides cost savings due to the lower electricity

prices and the convenience of charging at home or at the workplace. With the increasing

adoption of solar energy and DC micro-grid technologies, an initial investment could provide

energy to recharge vehicles at almost no additional cost to the consumer.
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Fig. 1.3: Share of U.S. GHG emissions by sector and vehicle class in 2018 [5].

1.1.2 Challenges Facing the Mass Adoption of Electric Vehicles

Mass adoption of EVs refers to the scenario where a significant percentage of the vehi-

cles on the road are electric. Despite the potential benefits of transportation electrification

and mass adoption of EVs, there are a few challenges on the road to mass adoption. While

the range and cost of present day (2021) consumer EVs is almost comparable to ICE vehi-

cles, the issue of refuelling (recharging) times still remains.

For instance, a road trip from Los Angeles to Salt Lake City (708 miles) takes 19%

longer to complete and requires 66% more fuel (charging) stops when a long range Tesla

Model 3 is used over an ICE vehicle with the same range of 353 miles (Model 3 trip details

calculated using [19]). While this does relate to range anxiety, at its core, it is an issue of slow

recharging times. While it is practically impossible to reach the same refuelling (recharging)

speed as gasoline using current battery technology, the issue can be partially addressed using

existing technologies. Two possible solutions to this issue are the deployment of extreme

fast chargers (XFC) [20–22] and in-motion charging technologies [9, 23–25]. Extreme fast

chargers (XFCs) work on the same concept as a fueling station and require the vehicle to

stop and recharge as and when the battery state-of-charge (SOC) drops below a certain

range. While XFC technology is easier to deploy and is already commercially available

from some automakers [26, 27], there are certain drawbacks that limit the capabilities of
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this technology. One prominent drawback is the current day battery technology and its

inability to maintain a high rate of charge over the entire SOC range. Fig. 1.4 shows

this phenomenon using real world data from a supercharger. It can be seen that the full

charging power of 250 kW is only available for a small and impractical SOC range due to

the charging profile of the vehicle battery. Another potential drawback is the impact high

C rate charging has on battery life. Authors in [7] experimentally validate the degradation

of Li-ion batteries at different C rates. Fig. 1.5 shows that the frequent charging at higher

C rates increases the rate at which the Li-ion battery degrades. Therefore, XFC technology

by itself can not fully solve the issues of range anxiety and refueling (recharging) times.

Fig. 1.4: Tesla Model 3 LR charging profile on a V3 Supercharger [6].

The second possible solution is to use in-motion charging technologies to dynamically

charge EVs without the need for frequent charging stops. In-motion charging opens up a

wide range of possibilities that were previously not thought possible, such as quasi-dynamic

charging at intersections and traffic lights, and in-motion vehicle-to-grid (V2G) energy

transfer. Fixed route applications such as transit buses can make use of in-motion charg-
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Fig. 1.5: Li-ion battery capacity degradation with different C rates [7].

ing technologies to drastically reduce the on-board battery pack and improve passenger

capacity or decrease their energy consumption per mile. Other applications include drayage

trucks, warehouse vehicles, and industrial robots. With automakers racing toward level 5

autonomy, the refueling (recharging) aspect of the vehicle still requires human intervention.

Using WPT technologies, autonomous EVs would be able to recharge automatically without

human interaction. With the availability of wireless charging units on vehicles, additional

range benefits and smaller battery packs become even more practical with the adoption of

DWPT technologies.

Therefore, a good mix of wired XFC and DWPT technologies is seen as the catalyst to

overcome the issues of ”range anxiety” and move towards the mass adoption of EVs. This

dissertation focuses on the dynamic wireless power transfer (DWPT) solution and aspects

related to the practical deployment of DWPT technologies.

1.2 Review of Existing Research
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1.2.1 Pad Designs

The transmitter and receiver pads are key components in wireless charging systems.

Depending on the context and application, other terms used to describe the power trans-

mitter and receiver pads are given in Table. 1.1.

Table 1.1: Nomenclature used to describe inductive WPT pads.

Transmitter Pad Receiver Pad

Primary Pad Secondary Pad

Track Pick-up

Ground Assembly Vehicle Assembly

Prior research works [23, 28–39] on pad designs have explored a variety of coil shapes

and ferrite arrangements in order to achieve application specific objectives. These objectives

include horizontal and vertical misalignment tolerance, reducing leakage magnetic fields,

increasing the ferrite utilization, and increasing power transfer capability to name a few.

The dynamic wireless charging systems implemented in prior research typically consist

of an elongated transmitter pad [40] or smaller segmented transmitter pads [8,28] powering

one or more receiver pads as seen in Fig. 1.6 and Fig. 1.7.

Fig. 1.6: Segmented coils used to demonstrate dynamic charging [8].
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Fig. 1.7: Elongated rectangular track coil used for wireless charging [9].

Authors in [41] explore the use of a dual-phase bipolar track (BPT) to ensure inter-

operability with square/circular (CP) and Double-D (DD) standard receiver pads. Various

trade-offs with the BPT transmitter and CP and DD receivers are analyzed. The authors

in [28] develop a modified segmented rectangular pad design with overlapping coils to ad-

dress the issue of pulsating dynamic power profiles caused by a drop in coupling coefficient

when transitioning from one transmitter pad to another. This is a challenge that multiple

research groups have run into and tried to address by modifying the pad shapes [35, 36],

adding additional reactive elements to the system [8] and developing new ways to control

the system [42–44]. The proposed solutions with overlapping coil designs [28, 41] restrict

the use of modular transmitter pad units. For a large scale deployment of road-embedded

chargers, a modular system offers installation and maintenance benefits.

To overcome this challenge of pulsating power profiles without compromising on the

modularity of the system, the authors in [23] have proposed a Booster Coil ground assembly

(GA) design. Some of the challenges with this design and proposed solutions are addressed

in Section 6.4.

1.2.2 Power Electronics

Research on power electronics in WPT systems is focused on the DC/AC conversion,

AC/DC conversion, auxiliary DC/DC conversion [45] and the design of various compen-

sation networks [46, 47]. A majority of DWPT systems make use of a full-bridge phase

shifted inverter and a diode bridge rectifier as the DC/AC and AC/DC conversion com-
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ponents respectively. Authors in [48] propose a secondary-side control method for power

control and efficiency maximization is achieved using a Half Active Rectifier. Energy effi-

ciency improvements are typically achieved by actively controlling the turn-on and turn-off

of different transmitter pads in a DWPT system with multiple transmitter pads [25,28,43].

Authors in [42] propose an auto-tuning control system to detect the presence of a receiver

pad and turn the corresponding transmitter pads on using the variation in self-inductance

of the transmitter pad, without the use of additional sensors. Authors in [49] present an

optimal frequency tracking scheme to maximize the infrastructure utilization and make use

of phase shift control to regulate the output voltage. The system designed in [50] presents

the use of a front-end DC/DC buck converter powering a push-pull converter. This system

is intended for use in a DWPT scenario due to its tolerance to mistuning and coupling factor

between the primary and secondary pads. Authors in [51] analyze an LCCL tuning network

and show how the system robustness is improved when compared to other compensation

networks.

Other works like [52] explore the transfer of power and information together by using a

trapezoidal current waveform controlled by phase-shift modulation. Authors in [53] present

the design of a dual-output inverter topology to power two different primary pads in a

segmented pad DWPT system independently if needed. Few of the prior works also discuss

the concepts of multi-phase transmitter and receiver pads [31,35,44,54,55].

Other research works on WPT systems include current fed systems [56, 57], and syn-

chronous rectifiers [58, 59]. Current and future research direction in this field is focused on

reducing system costs [60], improving reliability and cybersecurity [61].

1.2.3 Pavement Integration

Prior works in pavement integration discuss some of the design challenges with con-

structability of concrete and asphalt-embedded pads [1, 10, 41, 62–67]. Depending on the

geographical location of the research group, and local pavement construction methods, the

authors explore pavement-embedded transmitter pads in asphalt or concrete.

The concept of magnetizable concrete has been explored in [62, 63] to embed wireless
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charging infrastructure into roadways and enable dynamic wireless charging. Works in [1,64]

show that regular construction methods can not be integrated directly when constructing

pavement-embedded charging pads due to the limitations of the charging pads. For example,

authors in [64] use a specialized cement asphalt mortar (CAM) mix instead of hot mix

asphalt due to the high temperatures in the process. In [1], a flowable mix with only sand

aggregate is used so that a uniform composition of the concrete slab can be achieved. This

is due to the limitations of the wireless charging pad used in the work. The densely packed

coil turns restrict the flow of concrete and prevent the use of larger aggregate particles which

are typically used in concrete pavement construction. Authors in [65] develop numerical

models to analyze the impact of embedding wireless charging pads inside pavements and to

estimate the structural consequences of doing so. Researchers in [66] evaluate the thermal

characteristics of a WPT pad to estimate how losses in the coil and ferrite affect the system

performance when there is limited airflow available.

Authors in [67] analyze the construction of steel-reinforced concrete pavement slabs

and the power dissipation of WPT systems. The eddy current loss in the reinforcement

steel rebar is identified as the largest individual source of loss in the system. The authors

suggest methods to redesign the steel reinforcement structure to break the eddy current

loops by using carved bars. While this method helps in reducing losses in the rebar, it

increases the construction complexity due to the need for custom rebar mats, which in turn

increases the total system cost and construction time.

1.2.4 System Modeling

Stationary inductive power transfer systems have been extensively studied analytically

and modeled in prior works [68, 69]. While stationary circuit models provide an insight

into the system operation at individual operating points, they cannot be used to accu-

rately model the inter-dependent effects between multiple primary pads and related power

electronics hardware in dynamic operation. Prior research works [70–74] have explored ana-

lytically modeling the transient effects observed in dynamic wireless power transfer systems.

The authors in [70, 71] develop a simplified model that accurately models well-tuned
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systems, but does not account for system mistuning which is very likely in DWPT systems.

Authors in [75] present the direct envelope modeling of an LCCL tuned resonant WPT sys-

tem by decomposing the inverter output into its fundamental frequency and two dominant

side bands. The authors in [76] model the dynamic nature of coupling as a step change

in input voltage and design a closed loop controller to stabilize the output voltage. This

method fails to take into account the effect of vehicle speed on the dynamics of the controller

and the effects of induced voltages from the neighboring pads. The authors in [40] present a

comprehensive analysis of a specific WPT system using the generalized state space averag-

ing (GSSA), which can be used to model converter dynamics when the coupling coefficient

remains constant. Authors in [77] model the dynamic behavior by estimating the mutual

inductance in real time. Authors in [73] also use GSSA and small-signal models to analyze

the steady-state and transient system responses considering a constant coupling factor. An

envelope model of the turn-on transient is developed analytically. The design of the DWPT

system presented in [72, 73] makes use of the GSSA method and implements a dual loop

controller. The simulations presented in [72] are limited to one transmitter pad and one

receiver pad. Further, the dynamic behavior of the secondary pad and vehicle is modelled as

a time varying load resistance profile and the exact variation in coupling coefficient between

the pads is not taken into account.

1.2.5 Feasibility Studies

The economic feasibility of new technology is an important aspect of research to un-

derstand the value a particular technology brings to society. Prior works have analyzed the

economic impact of transportation electrification and the usefulness of in-motion charging

technologies.

A report by logistics company UPS and Greenbiz [16] discusses the need for fleet

electrification and some of the challenges faced in achieving this goal. Multiple studies

conducted by the Electrification Coalition [17, 18, 78–80] discuss various real world case

studies and scenarios where transportation electrification makes economic sense. Aspects

such as total cost of ownership, vehicle maintenance and support savings, and the need
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for charging infrastructure are highlighted in a collaborative study with logistics company

FedEx [18].

Authors in [81] develop a mathematical model to evaluate the cost of electrification for

a bus route in New Zealand. The costs and benefits associated with the installation of a

dynamic IPT system are presented in this work. The optimal placement of chargers along

a bus route is shown to help optimize battery pack sizing. With power companies adopting

a demand pricing model, the price of electricity varies according to the time of day. The

optimal charging time and route scheduling problem is explored in this context in [82]. The

optimization shows that a reduction in battery size is possible with an optimal charging

schedule for wirelessly charged electric buses. The optimal scheduling is made possible due

to the availability of wireless charging, instead of the electric bus having to return to the

bus station to take advantage of off-peak pricing.

Authors in [83] discuss the various challenges facing DWPT technologies including

vehicle to infrastructure (V2I) communications and reducing the leakage EMF to satisfy

current safety standards. Authors in [11] present the power consumption model of an EV

and present a simulation analysis on the trade-offs between a standalone charging option

versus a combination of dynamic and quasi-dynamic wireless charging system. The study

concludes that deploying a combination of charging systems at an optimal road coverage

level can achieve unlimited range for light duty vehicles. This work also addresses some

challenges with the safety concerns regarding human exposure to magnetic fields. Authors

in [84] suggest a solution for increasing the driving range of EVs by using vehicle to vehicle

(V2V) communication and dynamic wireless charging technology. The increase in driving

range is achieved by route optimization using a combination of static charging systems and

dynamic charging. Research presented in [85] explores the use of bidirectional quasi-dynamic

wireless charging at traffic intersections to increase EV range in city driving scenarios and

the possibility of vehicle-to-grid (V2G) services.

Authors in [86,87] explore detailed models for DWPT installation and provide recom-

mendations on a power level that can satisfy the energy needs for multiple vehicle classes,
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thereby improving infrastructure utilization. The authors also recommend the use of mul-

tiple receivers to increase the power received.

1.3 Problem Statement

Dynamic wireless power transfer (DWPT) refers to the set of technologies that enable

in-motion charging of electric vehicles. The current work specifically deals with dynamic

inductive power transfer (DIPT). DWPT and DIPT are used interchangeably in this dis-

sertation. The high initial construction cost, integration with existing roadways and infras-

tructure utilization are seen as the major challenges that need to be addressed. Further,

the time taken to test and develop these systems can be quite a hassle due to the cost of

construction and the real world testing required to validate the power electronics and coil

designs. An overview of the problem statement and proposed contributions is shown in

Fig. 1.8.

Fig. 1.8: DWPT technology gap assessment and dissertation contributions.

1.4 Contributions

To address the aforementioned issues, the current work:
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• Models a digital-twin DWPT system that can be used to rapidly evaluate new coil

designs, tuning networks and power electronic topologies, thereby reducing the time

taken to design and develop these systems.

• Presents the design and pavement integration of DWPT transmitter coils and related

power electronics hardware. Pavement integration allows different vehicle classes to

utilize the infrastructure without sacrificing their available ground clearance.

• Presents the design and validation of multi-pad receivers to enable modularity and

scalable power levels. This results in higher utilization of the charging infrastructure

since different vehicle classes with different power levels can make use of the same

charging infrastructure to receive power wirelessly.

1.5 Dissertation Organization

This dissertation is organized as follows:

• Chapter 2 discusses the basic principles behind wireless power transfer, the process

of designing a practical dual-LCCL WPT system, and presents a brief discussion on

how power levels are classified in this work.

• Chapter 3 presents the modeling approach used to model various transmitter and

receiver topologies and simulate their working and dynamic operation. Detailed mod-

eling procedures are presented for magnetic FEM modeling in ANSYS Maxwell and

circuit modeling in LTSpice and Plexim PLECS software.

• Chapter 4 covers the design and analysis of roadway-embedded transmitter coils,

including the design considerations for concrete-embedding of power electronics. This

chapter also includes details about the designed hardware and test results obtained

from validation testing.

• Chapter 5 covers the design and analysis of multi-pad receiver systems. Real-world

hardware tests are performed to validate the operation of multi-pad receivers with

DWPT transmitters.
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• Chapter 6 presents the safety and compliance requirements for WPT systems and

how they can be applied to DWPT systems. A simulation analysis is performed to

evaluate methods to reduce leakage magnetic fields in a sample DWPT system.

• Chapter 7 concludes the dissertation and briefly discusses the direction of future re-

search.



CHAPTER 2

DYNAMIC WIRELESS POWER TRANSFER

2.1 Inductive Power Transfer

Inductive power transfer can fundamentally be described using Ampere’s law and Fara-

day’s law. A time-varying current (AC) flowing in the primary coil generates a time-varying

magnetic flux as described by Ampere’s law. When the secondary coil is in the vicinity of

the primary coil, the time-varying magnetic flux induces a voltage on the secondary coil

as described by Faraday’s law. The differential forms of Ampere’s and Faraday’s laws are

given in (2.1) and (2.2) [47].

∇×H = J +
∂D

∂t
(2.1)

∇×E = −∂B
∂t

(2.2)

where H and E are the vector magnetic field intensity and electric field intensity respec-

tively. The magnetic flux density and the electric flux density are represented by B and D

respectively. And the current density is represented by J .

Inductive power transfer coils are in essence inductors whose magnetic flux links with

each other when they are in each other’s vicinity. The self-inductance of a magnetic structure

is defined as the ratio of total flux linkage to the current that generates the flux [88].

Lself =
Nφ

I
(2.3)

where I is the excitation current generating the flux, φ is the total flux generated by the

coil and N represents the number of turns in the structure. It should be noted that (2.3) is

valid only under the assumption that the total flux links with each of the N turns.
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Since φ is directly proportional to the number of turns in the magnetic structure, Lself

is proportional to N2. In a wireless inductively coupled system of coils, the magnetic flux

generated by the primary coil links to the secondary coil. This mutual flux linkage φ12 gives

rise to mutual inductance M12 between the two coils. This characteristic of an inductive

charging system is often represented using the coupling coefficient k12, where k12 and M12

are related as follows [89]

k12 =
M12√
L1L2

(2.4)

where L1 and L2 are the self-inductances of the primary and secondary coils respectively.

Inductive wireless power transfer systems are typically modeled as a loosely coupled

transformer as shown in Fig. 2.1. A single transmitter and single receiver is shown in this

case.

Fig. 2.1: Circuit diagram showing two loosely coupled coils.

where the corresponding voltages and currents are related as follows

v1 = L1
di1
dt

+M12
di2
dt

(2.5)

v2 = L2
di2
dt

+M12
di1
dt

(2.6)
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where L1, L2 and M12 are the self-inductances of the primary and secondary coils and the

mutual inductances between the two coils respectively.

The equations can be represented in matrix form as follows

v1
v2

 =

 L1 M12

M12 L2


di1

dt

di2
dt

 (2.7)

One significant difference between an inductive power transfer system and a transformer

is the large leakage inductance present due to the lack of a low reluctance path between

the coils. This leakage inductance is compensated by the use of capacitors in compensation

networks. In case of WPT systems transferring more than a few watts, these compensation

networks are also utilized to create a resonant condition and maximize power transfer. This

is commonly referred to as resonant inductive power transfer. Since IPT in the context

of electric vehicles is typically in the order of kilowatts, inductive power transfer in this

dissertation refers to resonant inductive power transfer. One common compensation network

used in practice is the LCC or LCCL resonant network [90]. The design of a system with

dual-LCCL resonant compensation networks is presented in the following section.

2.2 Dual-LCCL System Design Methodology

A wide variety of resonant networks are available for WPT systems depending on the

system requirements [47, 91]. WPT and DWPT systems make use of the LCCL resonant

network due to its desirable current source characteristics and load-independent output

current. Further, the LCCL compensation networks allow for zero coupling, which is an

important passive safety feature for DWPT systems. Consequently, this work makes use of

the dual-LCCL resonant networks in the works presented in Chapters 4 and 5. This section

presents the design procedure used to select the component values and system parameters

using a full-bridge inverter.

In many practical DWPT systems, the output power level is the primary design spec-

ification around which the system is designed. The output power of an inductive WPT
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system is given by

Pout = QSu (2.8)

where Q is the loaded quality factor of the system and Su is the uncompensated power [68].

The Su can be calculated as follows

Su = ωI2k2Lpad (2.9)

where I is the current flowing through a primary coil with self-inductance Lpad and ω is the

angular frequency of the excitation current given by (2.10).

ω = 2πf (2.10)

where f is the fundamental frequency of the primary coil excitation. And the coupling

coefficient between the primary and secondary coils is represented by k.

Based on the thermal limitations of the system and availability of Litz wire, an upper

limit on the track current value I can be established. This limit also depends on the

intended system operation. For instance, with DWPT systems, each coil is energized for a

brief period of time when a vehicle passes over and then turned off until the next vehicle

arrives. In case of stationary WPT systems, the coils need to be designed for continuous

operation.

Using (2.8) and (2.9), the required coupling k and Lpad are design parameters that

are chosen based on the air-gap and vehicle size. When standardized primary or secondary

pads are used, then available design parameters are adjusted to achieve the required power

transfer. Typically, a misalignment tolerance specification is also desired. The system is

then designed to achieve the rated power at the worst case misalignment and the power

transfer is modulated at better misalignments using the DC/AC, AC/DC or DC/DC power

converters in the system.

The choice of DC link voltage VDC on the primary side depends on the available

DC supply or grid converter and the system design can be adjusted accordingly. The
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equivalent primary side circuit model with three impedances can be seen in Fig. 2.2. The

network formed by Zbr and Zpar circulates the higher order harmonics of the system and

the fundamental frequency sinusoidal is fed into the series combination of Zser, which is a

series combination of Lpad and Cser.

Fig. 2.2: Circuit diagram showing the primary LCCL resonant network in a WPT system.

Fig. 2.3: Circuit diagram showing the secondary LCCL resonant network in a WPT system.

The value of Zbr is determined as shown in (2.11) and Zpar is set to resonate with Zbr

as shown in (2.13).

‖Zbr‖ =
VDC

I
(2.11)

Lbr =
‖Zbr‖
ω

(2.12)

Zbr = −Zpar (2.13)
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Cpar can then be calculated as follows

Cpar =
1

ω‖Zpar‖
(2.14)

The series capacitor Cser is used in LCCL resonant network to compensate the induc-

tance of the primary pad and reduce voltage on the Cpar capacitor bank. The value of Cser

can be calculated as follows

Cser =
1

ω(‖Zpad‖ − ‖Zser‖)
(2.15)

where

‖Zser‖ = ‖Zbr‖ = ‖Zpar‖ (2.16)

‖Zser‖ = ωLpad (2.17)

Similarly on the secondary side, the desired input current to the AC/DC full bridge

rectifier is determined based on the output power required and the DC output voltage. This

voltage is typically an input to a DC/DC converter interfaced to the vehicle battery pack.

The equivalent circuit of the secondary side, used for analysis is shown in Fig. 2.3. When

a diode bridge rectifier is used, the secondary bridge current is calculated as follows

Ibr,sec =
π

2
√

2

Preq

Vout
(2.18)

where Preq is the output power required and Vout is the output voltage of the AC/DC diode

bridge rectifier. The Zser,sec impedance can then be calculated as shown

‖Zbr,sec‖ =
Voc
Ibr,sec

(2.19)

where Voc is the open circuit induced voltage on the secondary pad, calculated as follows

Voc = jωMI (2.20)
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where M is the mutual inductance between the primary and secondary pad. The other

elements of the LCCL resonant network are calculated similar to the primary side as follows

Cser,sec =
1

ω(‖Zpad,sec‖ − ‖Zser,sec‖)
(2.21)

‖Zser,sec‖ = ‖Zbr,sec‖ = ‖Zpar,sec‖ (2.22)

where Zser,sec, Zbr,sec, Zpar,sec and Zpad,sec are the corresponding secondary side LCCL

impedances.

2.3 Power level definitions

Power level definitions are arbitrary and change over time as technology further evolves.

This section classifies the power levels based on the respective functionality offered.

• 1 kW - 7 kW

Used for low power industrial robots and small machinery. Impractical for roadway

DWPT due to the infrastructure cost and the return on investment.

• 7 kW - 30 kW

Can be used to charge EVs in a drive-thru or at a traffic light. Includes quasi-dynamic

charging offered as a convenience to the customer. Higher end of this range can also

be used for fixed route EVs such as transit buses.

• 30 kW - 80 kW

Power level which can enable roadway dynamic charging with current battery tech-

nology and cost of electrification. Potential battery size reduction depends on the

percentage of roadways that are electrified. Larger vehicles can make use of multiple

receivers to scale up the received power.

• 80 kW - 200 kW
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High power level which can reduce the percentage of roadways that need to be electri-

fied. With current battery technology, constant charging at these power levels could

result in a decrease in battery capacity.

• 200 kW+

Extreme fast charging power levels. Possible application includes robo-taxi autonomous

recharging or semi-truck recharging, where higher EV utilization is more important

than the battery degradation effects due to the higher rate of charge.



CHAPTER 3

MODELING DYNAMIC WIRELESS POWER TRANSFER SYSTEMS

3.1 Challenges in Modeling DWPT Systems

Dynamic wireless power transfer systems involve high upfront infrastructure costs and

can benefit from a digital-twin approach in design. Digital-twin system models are de-

signed to save time and cost during the development and fine-tuning of resource-intensive

technologies. A comprehensive digital-twin model of a DWPT system should include the

following:

• FEM simulation model to determine the electro-magnetic characteristics

• Circuit simulation model to determine the electrical characteristics of the system

• Mechanical models to model the thermal and structural aspects of the system

• Multi-physics models to model the interactions between the thermal and electrical

characteristics

• Accurate material models to understand the behavior of the surrounding environment

on the system thermals, structural strength and power transfer

While lots of information can be obtained from a detailed digital-twin model, there is

a trade-off between the time taken to develop and tune the model and the level of detail

included. Depending on the application, various levels of complexity can be included in a

digital-twin model. This dissertation focuses on the FEM simulation model and the circuit

simulation models. Details on the thermal and structural modeling of DWPT systems can

be found in [92,93].

Dynamic inductive power transfer systems are typically modeled as discrete stationary

inductive power transfer systems due to the ease of modeling. This chapter presents a
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detailed workflow, modeling dynamic inductive power transfer systems, starting from FEM

models using ANSYS Maxwell and obtaining accurate circuit simulation models that can

be implemented in both SPICE and PLECS simulation software. This chapter details the

modeling methods used to simulate DWPT pads and the corresponding power electronics

required.

3.2 Generalized DWPT System

As explained in Chapter 2, inductive wireless power transfer systems are typically

modeled as a loosely coupled transformer as shown in Fig. 3.1. A single transmitter and

single receiver case is shown here for simplicity.

Fig. 3.1: Circuit diagram showing two loosely coupled coils.

The two-port network voltage and current relationships can be represented in matrix

form as follows v1
v2

 =

 L1 M12

M12 L2


di1

dt

di2
dt

 (3.1)

where the mutual inductance M12 is related to the coupling coefficient k as shown in (3.2)

M12 = k
√
L1L2 (3.2)

For a generalized system with multiple transmitter and receiver pads, the coupled
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inductor is shown in Fig. 3.1 and (3.1) are modified to obtain Fig. 3.2 and the matrix

shown in (3.3).

Fig. 3.2: Circuit diagram showing a generalized multi-coil WPT system.



v1

v2
...

v(m+n)


=



L1 M12 . . . M1(m+n)

M12 L2

...
. . .

M1(m+n) L(m+n)





di1
dt

di2
dt

...

di(m+n)

dt


(3.3)
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In case of stationary wireless power transfer systems with fixed air-gap and mis-

alignment, the coil self-inductances L1, L2, . . .Lm+n and mutual inductances M12, M13,

. . .M1(m+n) are constant values and can be used to compute the required voltages and

currents in the system. In case of dynamic wireless power transfer systems, the self- and

mutual inductances in the inductance matrix are time-dependent variables and the modified

inductance matrix can be represented as follows



L1(t) M12(t) . . . M1(m+n)(t)

M12(t) L2(t)

...
. . .

M1(m+n)(t) L(m+n)(t)


(3.4)

where t is the time. The time varying functions L1(t), L2(t), . . .L(m+n)(t) and M12(t),

M13(t), . . .M1(m+n)(t) are dependent on vehicle speed and longitudinal misalignment cou-

pling coefficient profiles in the direction of vehicle motion. The matrix shown in (3.4) can

be calculated using (3.5) and the desired vehicle speed.



L1(x) M12(x) . . . M1(m+n)(x)

M12(x) L2(x)

...
. . .

M1(m+n)(x) L(m+n)(x)


(3.5)

where x is the time. L1(x), L2(x), . . .Lm+n(x) and M12(x), M13(x), . . .M1(m+n)(x) are

dynamic self- and mutual inductance profiles of the DWPT system.

Variable x in this context refers to the longitudinal misalignment of the system. An

example of the coupling coefficient between one primary pad and one secondary pad in

the system as a function of longitudinal misalignment kps(x) is shown in Fig. 3.3 and the

corresponding time varying coupling coefficient kps(t) is plotted in Fig. 3.4.
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Fig. 3.3: Example showing the coupling coefficient between one primary pad and one sec-
ondary pad in the system as a function of longitudinal misalignment.

Fig. 3.4: Example showing the coupling coefficient between one primary pad and one sec-
ondary pad in the system as a function of time at different speeds.
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3.3 Simulation Workflow

The process of simulating DWPT systems is outlined in Fig. 3.5. The preliminary

inputs at the beginning of the modeling process are as follows:

• Coil shape (topology) and geometric dimensions

• DC/AC and AC/DC power electronics

• Primary and secondary compensation topologies

• System power level

Fig. 3.5: Flowchart showing the DWPT FEM and circuit modeling process.

The digital-twin modeling process begins with the development of a 3D model for sim-

ulation in an FEM tool such as ANSYS Maxwell. The preliminary simulation yields system

parameters such as coupling coefficient, and self- and mutual inductances between all the
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coils modeled. This data can then be used to design the primary and secondary compen-

sation networks based on the system power level requirements. Once the compensation

values are modeled based on realistic capacitor and inductor values, the WPT system can

be simulated in a circuit simulator such as LTSpice or PLECS. The amplitude and phase

of currents in various components of the system can be analytically calculated or obtained

from the circuit simulation. The amplitude and phase data is then applied to coils in the

ANSYS model to obtain transient loss distribution and leakage magnetic field data. For

DWPT systems with more than three primary pads, a unit-cell model can be identified as

explained in Section 3.4.1 and the system behavior can be extrapolated from a simplified

model.

3.4 Magnetic Model

Simulated inductive coupler models for static and dynamic wireless power transfer

systems have been extensively used in prior works [23, 25, 28, 54, 69]. The objective of

an FEM simulation is to obtain the inductance matrix for all the coils in the system.

For a system with m primary coils and n secondary coils, an (m + n) × (m + n) matrix

can be obtained to model the circuit behavior during the dynamic system operation. In

practical DWPT systems, a stretch of roadway is embedded with inductive charging coils

and one or more vehicles travel over the electrified roadway section and receive charge. The

number and total length of all primary pads is expected to be far greater than the length of

individual secondary pad assemblies. To reduce the complexity of the magnetic simulation,

the parameters obtained from a small section of roadway can be extrapolated to obtain the

entire system behavior. This model is described as a unit-cell model and can also be used

to simulate radiated magnetic fields and ensure safety and EMC regulations are met.

Using optimetric sweeps along the direction of vehicle motion, various inductance pro-

files are obtained which are a function of X-misalignment (in the direction of vehicle motion

or longitudinal direction). Similarly, inductance matrix profiles can also be obtained for

different values of Y-misalignment (to emulate lateral misalignment of the vehicle). The

obtained magnetic characteristics of the system are then used to develop a circuit model
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to analyze the system behavior and aid in compensation network design and evaluate con-

troller behavior with system dynamics. With a circuit model simulation of the inductive

power transfer system, realistic circuit behavior can be analyzed, and auxiliary sensing and

detection circuits can be evaluated before the full system is built.

3.4.1 Unit-cell Model

Practical dynamic wireless charging systems are expected to span several meters at a

stretch to enable charging zones along different interstate highways and city roads. Devel-

oping a electro-magnetic FEM model for the entire stretch of road is challenging due to the

computational power needed to model and run a full system FEM simulation. The solution

to this challenge is to identify a unit-cell in the system and extrapolate the electro-magnetic

characteristics to model the entire system. The unit-cell model is the smallest number of

transmitter and receiver pads that can be modeled to ensure an accurate repeating model

of the system. The unit-cell model is unique to each system design and modeling objectives

of the system. A method to identify and model the unit-cell of a system is presented in this

subsection.

The following criteria are established for a model to satisfy the unit-cell requirements:

• The electro-magnetic behavior of the entire system should be replicable by extrapo-

lating the unit-cell model.

• The coupling coefficient (k) or mutual inductance (M) variations greater than 1% of

the corresponding peak values should be included in the model.

• The unit-cell model should be applicable to different values of lateral misalignment

and air-gaps.

An example system is considered with four transmitter pads and one receiver pad.

The three different models simulated are shown in Fig. 3.6. Coupling factors between each

primary pad and receiver pad are presented in Fig. 3.7 and the coupling factors between

adjacent primary pads are presented in Fig. 3.8. The parameters used in the above example
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are as given in Table 3.1. A second example is also considered with the primary pad

dimension almost equal to the secondary pad dimension. The geometric parameters for this

system are given in Table. 3.2. The three different models simulated are shown in Fig. 3.9.

Coupling factors between each primary pad and receiver pad are presented in Fig. 3.10 and

the coupling factors between adjacent primary pads are presented in Fig. 3.11.

Table 3.1: Example 1 geometric parameters.

Parameter Value

lTx 1400 mm

lRx 600 mm

lgap 200 mm

Table 3.2: Example 2 geometric parameters.

Parameter Value

lTx 700 mm

lRx 600 mm

lgap 200 mm

It can be seen from Fig. 3.8b and Fig.3.11b that the coupling between the different

primary pads is accurately modeled using the three-coil model. When a two coil model

is used for extrapolation as shown in Fig. 3.8c and Fig. 3.11c, the coupling data between

adjacent pads is lost and hence these effects can’t be modeled in the circuit simulations.

Therefore a three-coil model with two primary pads and one secondary pad is sufficient to

model and extrapolate the behavior of the full coil model in the two examples considered.

This holds true for all systems where the primary pad is at least as long as the receiver pad

assembly in the longitudinal direction and satisfies (3.6). In a practical DWPT system, it

is unlikely that the individual primary pads are smaller than the receiver pads. Hence the

three-coil unit-cell model can be applied to model all practical DWPT systems.
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(a)

(b)

(c)

Fig. 3.6: ANSYS models showing the a) full coil model b) three-coil model and c) two-coil
model for a DWPT system with ltx = 1400 mm.
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(a)

(b)

(c)

Fig. 3.7: Coupling factors between each primary and secondary pad using a) full coil model
b) three-coil model and c) two-coil model for a DWPT system with ltx = 1400 mm.
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(a)

(b)

(c)

Fig. 3.8: Coupling factors between adjacent primary pads using a) full coil model b) three-
coil model and c) two-coil model for a DWPT system with ltx = 1400 mm.
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(a)

(b)

(c)

Fig. 3.9: ANSYS models showing the a) full coil model b) three-coil model and c) two-coil
model for a DWPT system with ltx = 700 mm.
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(a)

(b)

(c)

Fig. 3.10: Coupling factors between each primary and secondary pad using a) full coil model
b) three-coil model and c) two-coil model for a DWPT system with ltx = 700 mm.
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(a)

(b)

(c)

Fig. 3.11: Coupling factors between adjacent primary pads using a) full coil model b) three-
coil model and c) two-coil model for a DWPT system with ltx = 700 mm.
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2× lTx + lgap
lRx

> 2 (3.6)

where lTx is the length of each individual primary pad, lRx is the length of each individual

secondary pad assembly and lgap is the longitudinal distance between two adjacent primary

pads.

3.5 Circuit Model

3.5.1 LTSpice

To create a circuit model in LTSpice, the inductance matrix (3.5) obtained from ANSYS

Maxwell is converted to a time-varying inductance matrix (3.4) based on the desired vehicle

speed. In the current work, a Matlab script is used to generate the desired time-varying

inductance matrix from an X-misalignment dependent inductance matrix obtained from

ANSYS. This conversion can be customized to adjust resolution of the data, vehicle speed,

and misalignment. The time-varying inductance matrix is transferred to LTSpice using the

Piecewise Linear (PWL) function option as shown in Fig. 3.12. Here, an example system

containing four transmitter coils and one receiver coil is considered. A few of the dependent

voltage sources used to model the differential equations presented in (3.3). For example,

the files L1data.txt and k12data.txt contain comma separated values of self-inductance of

L1 and coupling coefficient k12. The time-varying self- and mutual inductances are then

used to calculate the externally induced voltages on each coil and model the behavior of

the DWPT system as shown in Fig. 3.13. A sinusoidal 85 kHz current source is used in this

example to simplify the model. Additional details regarding the compensation network and

power electronics can also be added to the model in place of the sinusoidal current source.

3.5.2 PLECS

The circuit model in PLECS is modeled using a variable inductor model. The dynamic

profile of pad self- and mutual inductances are provided in the form of a control signal
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Fig. 3.12: Examples of dependent voltage sources modeled in LTSpice to describe the
behavior of DWPT pads.

vector to the variable inductor. PLECS requires that the inductances be arranged by the

elements of the inductance matrix (row by row) followed by their time derivatives as shown

in (3.7). The control vector matrix therefore has a width of 2.(m + n)2, where (m + n)

is the total number of coils being modeled. The terminals of all coils are connected to

wire multiplexers at each terminal of the variable inductor as shown in the example in

Fig. 3.15. This models the variable coupling behaviour of all coils in the DWPT system and

their time varying behavior. The rest of the system components including the compensation

network, inverters, rectifiers, controls and communication system can be modeled in PLECS

or Simulink as required. An example system with three transmitters and three receiver pads

is shown. The top-level PLECS schematic is shown in Fig. 3.14. The three transmitter pads

are powered from three independent power supply units (PSUs) and the three receiver pads

are connected in series and connected to one rectifier unit. The Dual-LCCL compensation

networks are also modeled in the simulation. The elements inside the PSU1 and SecReg1

subsystems are shown in Fig. 3.16 and Fig. 3.17 respectively. LP1 1 and LP1 2 are the two

terminals of the first transmitter pad and LS1 1 and LS1 2 are the two terminals of the first

receiver pad. The example in consideration is based on the system designed in Chapter 5.

Hence the simulation validation results are also presented in Chapter 5.
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Fig. 3.13: Four transmitter pads and one receiver pad modeled as part of a DWPT system
in LTSpice.

Lmat =

 L1 M12 . . . M(m+n−1)(m+n) L(m+n) . . .

d
dtL1

d
dtM12 . . . d

dtM(m+n−1)(m+n)
d
dtL(m+n)

 (3.7)

3.5.3 Summary

A comprehensive simulation work flow including FEM simulations and time domain

circuit simulations is developed in this chapter. The digital twin models presented in this

chapter allow designers to evaluate various pad shapes and power electronics topologies

without the need for a complex hardware build-out. This simplifies the process of designing

DWPT systems.
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Fig. 3.14: Top level PLECS schematic showing the three transmitter pad and three receiver
pads modeled using the Roadway block.

Fig. 3.15: PLECS schematic showing the elements inside the Roadway block.
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Fig. 3.16: PLECS schematics showing the primary side elements modeled inside the PSU
block.

Fig. 3.17: PLECS schematics showing the secondary side elements modeled inside the
SecReg1 block.



CHAPTER 4

ROADWAY-EMBEDDED TRANSMITTER COILS

Practical implementation of dynamic inductive power transfer requires integrating coil

design techniques with existing construction methods. This work explores the various de-

sign challenges associated with embedding inductive power transfer (IPT) coils in concrete

pavements. The coil design process outlined in this chapter takes into account the struc-

tural aspects of concrete pavements and ease of construction. This chapter also explores the

effects of ferrite spacing on losses generated in the pad. A phase change material is used for

passive thermal management of ferrite bars inside the concrete. Multiple concrete-embedded

pad prototypes are built and tested for their electrical and structural properties.

Dynamic wireless charging systems allow EVs to recharge while in motion and can

theoretically help them achieve infinite range depending on the percentage of roadways

that are electrified [81, 94, 95]. Dynamic wireless charging systems require lower power

levels than extreme fast charging (XFC) systems and thereby reduce peak loading on the

grid. The lower rate of charge offered by dynamic wireless charging systems can prolong

EV battery life [96].

Integrating dynamic wireless power transfer (DWPT) systems with roadway construc-

tion is seen as the next step towards practical adoption of DWPT technologies. This chapter

presents the design and testing of a 50 kW concrete-embedded DWPT system.

4.1 Design Considerations

Based on engineering experiences with wireless charging systems and challenges faced

in prior works, various design decisions are made to improve the performance of the current

system.



45

4.1.1 Wire Insulation Jacket

Prior implementations of pavement-embedded wireless charging coils in the concrete

or asphalt showed an increase in the effective series resistance (ESR) of the pad and a

subsequent drop in the pad quality factor (Q) [1, 10]. The quality factor of the pad Q is

defined as shown in (4.1), where Lpad is the self-inductance of the pad. Results showing

a change in impedance before and after concrete-embedding can be seen in Fig. 4.1 and

Table. 4.1. The large variation in the pad impedance renders the WPT system unusable

due to the increase in conductive losses in the system.

Q =
ωLpad

ESR
(4.1)

Fig. 4.1: Comparison of coil impedance before and after embedding the coil in concrete [10].

Table 4.1: Long-term inductance and resistance values [1].

Measurement Initial 28 days 60 days

Inductance (µH) 170.5 170.5 170.5

Resistance (Ω) 0.25 8.00 4.50

Upon further inspection, the reason for this change in coil impedance is identified as
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the insufficient insulation thickeness available on both the coils. Fig. 4.2 and Fig. 4.3 show

the use of single nylon insulation on the respective Litz wires.

Fig. 4.2: Circular pad with single-nylon insulation being directly embedded in concrete [1].

Fig. 4.3: Rectangular pad with single-nylon insulation directly embedded in concrete [10].

The Litz wire chosen for this work uses a 2 mm thermoplastic elastomer (TPE) insula-

tion for waterproofing and reducing the eddy current losses due to soluble salts present in

concrete. An image of the wire cross section is shown in Fig. 4.4.

A small-scale circular pad (CP) prototype is constructed using the chosen Litz wire

as shown in Fig. 4.5. The prototype pad includes the coil, ferrite, and steel rebar for
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Fig. 4.4: Litz wire with 2 mm TPE insulation used to construct the coils.

reinforcement. The pad inductance and equivalent series resistance (ESR) are measured

before, during and after the concrete pour. The parameters are also measured over the

consequent 68 hours of concrete curing. The results are combined into a Q factor plot and

are shown in Fig. 4.6. The x-axis on this graph is plotted in a logarithmic scale to allow the

reader to observe the initial change in Q and its gradual recovery back to the initial value.

(a) (b)

Fig. 4.5: Scaled-down prototype of the coil designed to evaluate the performance of the
TPE insulating jacket a) before concrete pour b) during concrete pour.

4.1.2 Coil Shape and Design

Inductive charging coils require a high quality factor for efficient power transfer [68].
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Fig. 4.6: Variation in the prototype coil Q over a 68 hour time period from the start of
concrete pouring.

Therefore, coils designed for static or dynamic wireless charging include multiple turns with

a high ferrite fill-factor to increase inductance or multiple parallel windings to decrease

series resistance [69, 72]. When it comes to designing concrete-embedded IPT coils, this

approach results in coil designs with high area fill-factor and limited space for the concrete

to flow through. WPT pads behave as foreign objects in pavements and can cause artificial

discontinuities in concrete, decrease the load bearing capacity [97], and create sites for

pavement failure. To minimize the effect of these discontinuities, coil designs with lower

fill-factor are required. Fill-factor in the context of the present work is considered to be the

ratio of area occupied by the material to the area occupied by the entire pad. Taking the

above factors into consideration, a pad structure is designed with a copper area fill-factor

of 12% and a ferrite area fill-factor of 30%. This leaves more than 60% of the pad area to

be filled in by concrete (some of the copper and ferrite areas overlap which results in the

percentages not adding up).

An elongated DD coil is arbitrarily chosen for the purpose of this work, but the above

mentioned design principles can be applied to other coil topologies as well.

4.1.3 Ferrite Shape
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The structural engineering constraints mentioned in Section 4.1.2 restrict the use of an

aluminum backplate and a continuous ferrite structure as both these features can restrict

the flow of concrete during pavement construction. Additionally, concrete used for roadway

construction includes coarse aggregate particles ranging from 4.5 mm to 37.5 mm in diam-

eter. The use of larger aggregates keeps the construction costs low and meets pavement

design requirements. The current work uses a concrete mix which contains approximately

40% of #57 rock (25 mm in diameter). These large aggregate particles need to flow through

the WPT coil and ferrite assembly to obtain a homogeneous composition of the concrete

structure. To allow the flow of these coarse aggregate particles in concrete, the lowest

spacing between adjacent windings or ferrite bars is chosen to be 50 mm.

4.1.4 Frequency Selection

The choice of system frequency in a WPT system depends on a variety of factors. Prior

works can be categorized primarily into two frequency ranges - 20 kHz and 85 kHz.

As discussed in Section 2.2, the output power of an inductive WPT system is given by

Pout = QSu (4.2)

where Q is the loaded quality factor of the system and Su is the uncompensated power [68].

The Su can be calculated as follows

Su = ωI2k2Lpad (4.3)

where I is the current flowing through a primary coil with self-inductance Lpad and ω is the

angular frequency of the excitation current given by (4.4). The coupling coefficient between

the primary and secondary coils is represented by k.

ω = 2πf (4.4)
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where f is the fundamental frequency of the primary coil excitation. The voltage build up

across the pad terminals is given by

Vpad = IpadZpad (4.5)

Vpad = jωLpadIpad (4.6)

From (4.3) and (4.2) it is evident that a higher frequency of operation results in a

higher output power with the same pad design and coupling coefficient k. It is important

to note that as the frequencies of operation are pushed higher, the ferrite losses tend to

increase significantly, thereby decreasing system efficiency. Therefore it is uncommon to

find high power WPT systems operating over 150 kHz. Further, it can be observed from

(4.6) that a higher frequency of operation results in larger voltages across the coil terminals.

This requires additional high voltage safety features and an increase in system insulation

requirements. The factors affecting the frequency selection can be summarized as shown in

Table. 4.2. Taking these factors and the existing SAE J2954 standard into consideration,

an operating frequency of 85 kHz is chosen.

4.1.5 Pavement Reinforcement

The designed DWPT pad needs to be supported at a fixed height until the concrete

cures. The pad makes use of structural rebar in the concrete to support its weight without

needing additional structures inside the pavement. Since structural rebar is typically used

in concrete to improve the tensile strength and longevity, it is advantageous to use the same

rebar as a support structure for the pad. Steel is typically used to reinforce concrete slabs,

but in the presence of high frequency magnetic fields (85 kHz) generated by the IPT coils, it

causes localized heating due to eddy currents and core losses. Initial hardware tests indicate

that a steel rebar structure used with the IPT pad designed in Section 4.2 generates a loss of

790 W when a current source output from the LCCL compensation network generates 187

ampere-turns in the primary pad structure. This localized heating causes a temperature
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Table 4.2: Summary of how system attributes are affected by frequency.

System attribute 20 kHz range 85 kHz range

Pad size Large Small

Voltage across the coil ter-
minals

Low High

Switching devices IGBT, Si, SiC Si, SiC

ICNIRP limit compliance Higher limits for harmonic
frequencies

Lower limits for harmonic
frequencies

Loss mechanisms Comparatively lower losses Higher skin effect loss, core
loss and switching loss (if
hard switching)

Existing EV standards No specific standard gov-
erning this frequency range

Existing EV wireless charg-
ers make use of the SAE
J2954 standard

Miscellaneous Possible issues with audible
noise

Second harmonic and
higher frequencies could
interfere with amateur
radio frequencies

gradient in the concrete structure which can result in cracking and structural failure [98],

in addition to a decrease in system efficiency. This loss can be mitigated by the use of

a non-metallic fiberglass rebar structure replacing the steel rebar [99]. Owens Corning

Aslan 100 #4 fiberglass rebar is used in this system. Thermal imagery of the two different

pad structures in Fig. 4.7 shows the localized heating caused in the pad with steel rebar

compared to an identical pad with fiberglass rebar. Fig. 4.7a shows the steel rebar grid

structure reaching temperatures above 91 °C and the same rebar grid when replaced with

fiberglass rebar is practically invisible on the thermal image in Fig. 4.7b. Additional benefits

of using fiberglass for reinforcement are its corrosion resistance and lighter weight compared

to steel rebar. It should be noted that the thermal distribution on the ferrite bars can be

simulated accurately using FEM tools such as ANSYS Maxwell and this closely corresponds

to the magnetic flux distribution in the ferrite bars. The thermal images shown in Fig. 4.7

show an uneven distribution of heat in the ferrite bars since each ferrite bar was set to

have different spacing configurations as discussed in Section 4.1.6. However, in the final
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pad design used for testing, all the ferrite bars are identical.

(a) (b)

Fig. 4.7: Thermal image of the prototype pad when energized with nominal track current
a) prototype with steel rebar b) prototype with fiberglass rebar.

4.1.6 Thermal Management

Coil and Ferrite

Wireless charging pads generate heat under normal operation in the form of copper

and ferrite losses. Excessive heating in electronic systems can cause performance issues

and even hardware failure. This problem is compounded when the system is enclosed in

concrete, which has a low thermal conductivity. Further, localized temperature gradients

in concrete can cause structural failure due to stresses [98].

The required ferrite rods for the primary pad are constructed by stacking CF139 ferrite

bars (93 x 27.5 x 16 mm) end to end. This configuration results in the highest value of

primary inductance, and consequently a high value of power transfer between the primary

and secondary coils when the thermal aspects of the system are neglected. The heat gen-

eration profile of this ferrite configuration as observed using a FLIR T640 thermal camera

corresponds to an FEM profile of loss generation simulated in ANSYS Maxwell.

Considering the thermal effects of ferrite heating, an internally distributed air-gap



53

within the ferrite rods helps reduce the magnetic flux going through the rod. However,

the introduction of air gaps within the ferrite rods leads to a decrease in self-inductance

of the primary pad and hence a decrease in power transfer capability for the same track

current. There exists an optimal configuration for ferrite spacing that can achieve relatively

high primary pad self-inductance while eliminating hotspots in the ferrite. Different ferrite

spacing configurations are evaluated to determine the optimal design.

Optimal Ferrite Spacing

The primary DD pad consists of two turns wound using the 2 AWG Litz wire and

ferrite bars along the direction of the flux path. To facilitate the use of larger aggregate and

improve the structural properties when the pad is embedded in concrete, a ferrite fill factor

of 30% is chosen. The presence of air gaps in the ferrite bars, along the flux path increases

the effective reluctance of the path, decreases the amount of magnetic field intensity in

the ferrite and thus decreases core loss generated in the ferrites. While this is a desirable

characteristic, these air gaps also decrease the self-inductance of the primary pad and its

coupling with a secondary pad. Consequently, the track current needs to be increased to

maintain the same amount of power transfer. With an increase in track current, the Ohmic

losses in the pad winding increase. To study the trade-offs, three different ferrite spacing

configurations as shown in Fig. 4.8 are simulated and constructed for hardware validation.

The simulation results are shown in Fig. 4.9 and the experimental results are shown in

Fig. 4.10. The simulation results and experimental tests show a close correlation in the

ferrite loss distribution.

To quantify these effects and identify optimal length of the air gap and its position,

the following analysis is performed. To maintain pad symmetry, the air gaps are assumed

to be symmetric about the length of the pad as shown in Fig. 4.11. The distance between

an air gap and the center of the pad cross section is taken to be xAG. The length of the air

gap is taken to be lAG and the width of the ferrite is taken to be WFe, which is also the

width of the pad. Multiple designs are simulated by varying xAG and lAG and measuring

the core loss and calculating the Ohmic losses. The results from the optimal ferrite spacing
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Fig. 4.8: Cross-sectional view of the primary coils and ferrite bars showing the three sample
spacing configurations.

Fig. 4.9: Loss distribution in the three sample ferrite bars simulated in ANSYS Maxwell.
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(a) (b)

Fig. 4.10: Close-up image of the primary pad showing the effects of different ferrite spacing
configurations a) normal image b) thermal image.

Fig. 4.11: Cross-sectional view of the primary coils and ferrite bars.

analysis are shown in Fig. 4.12 and Fig. 4.13.

Results for core loss and copper loss variation with a variation in xAG and lAG are shown

for the fiberglass and steel reinforced pads in Fig. 4.12 and Fig. 4.13 respectively. Primary

coil ESRs of 110 mΩ (with steel rebar) and 45 mΩ (with fiberglass rebar) are considered

for this analysis. The ferrites have a combined volume of approximately 8831 cm3 and the

copper has a combined volume of approximately 1103 cm3. While it is slightly advantageous

to have higher loss in the ferrite compared to copper, the total amount of loss needs to be

taken into consideration.

Passive thermal management

Passive thermal management refers to the method of heat dissipation without the
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Fig. 4.12: Graph showing distribution of copper losses and core losses in the primary pad
when the airgap size and position are varied while keeping the power transfer capability
constant (ESR = 45 mΩ).

Fig. 4.13: Graph showing distribution of copper losses and core losses in the primary pad
when the airgap size and position are varied while keeping the power transfer capability
constant (ESR = 110 mΩ).
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Fig. 4.14: Cross section of a CF139 ferrite bar covered in PCM.

use of external energy to affect the heat transfer process [92, 100]. In the present work,

passive thermal management is achieved by the use of a phase-change material (PCM) [101].

Phase-change materials are substances which undergo a thermodynamic phase transition by

releasing or absorbing thermal energy. Ferrite bars used in the primary pad are submerged

in liquid PCM and then cooled to let the PCM solidify. The cross section of a PCM

enclosed ferrite rod is shown in Fig. 4.14. The PCM absorbs transient thermal energy from

the ferrites during power transfer and undergoes a phase transition from solid to liquid.

This prevents localized hot-spots and large temperature gradients in the concrete structure.

This is especially useful in DWPT systems due to the transient nature of system operation.

The use of passive cooling methods in a large scale deployment can significantly reduce the

total system cost when compared to active cooling methods.

4.1.7 Power Electronics Design

The inverter is designed using Cree/Wolfspeed CAS325M12HM2 power modules and a

high current multi-layer printed circuit board. An operating frequency of 85 kHz is chosen,

in compliance with existing standards for static inductive power transfer (SAE J2954).

An LCCL compensation as described in Section 2.2 is chosen for both the primary

and secondary sides of the system. The component values of the primary and secondary

compensation networks are given in Table. 4.3 and Table. 4.4.
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Table 4.3: LCCL Compensation Values for the Primary Pad

Component Value

Ls0 8.7 µH
Cp0 400 nF
Cs0 79 nF
Lpri 52.9 µH

Table 4.4: LCCL Compensation Values for the Secondary Pad

Component Value

Ls1 4.9 µH
Ls2 4.9 µH
Cs1 3.7 nF
Cs2 3.7 nF
Cs3 1.4 nF
Cs4 1.4 nF
Cp1 827 nF
Lsec 6.8 µH

4.2 Hardware Development

Authors in [11] show that a knee point exists at approximately 15-20% DWPT road

coverage and a 50 kW DWPT power level to achieve unlimited driving range using the

Highway Fuel Economy (HWFET) drive cycle [102] and this data is shown in Fig. 4.15.

The research presented in [11] models a Nissan Leaf as the vehicle of choice. Hence the

data obtained is accurate in the case of similar light duty vehicles. However, in a real world

DWPT implementation, utilization is expected to be shared between different vehicle classes

to obtain the maximum possible return on investment. Authors in [86,87] perform a similar

study with class 8 heavy duty trucks and other vehicles classes as well. The authors make

use of geographically diverse data sets, validated vehicle models, real-world drive cycles,

and variable vehicle adoption and infrastructure deployment rates. The authors conclude

that a 50 kW power level is sufficient to satisfy the power requirements of different vehicle

classes (when used in conjunction with multi-pad receivers for larger vehicles).

Based on the above discussion, a target power level of 50 kW is chosen for the purpose

of this work.

Using the various design considerations outlined in Section 4.1, a DD shaped primary
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Fig. 4.15: Required DWPT power level to achieve unlimited range using the HWFET drive
cycle [11].

Fig. 4.16: Two-meter long concrete-embedded pad prototype.

pad is designed with two turns wound using 2 AWG Litz wire and ferrite bars along the

direction of the flux path. A 2 m× 1 m DD coil is designed based on the above considerations

as shown in Fig. 4.16. A lower-turn, high-current design is chosen to facilitate elongated

coil designs for DWPT without significant voltage drop. A 2 AWG 5×5×5/34/38 type 2

Litz wire is chosen with a 2 mm thermoplastic elastomer (TPE) insulation jacket to protect

against alkaline conditions inside the concrete pavement and increase distance between the

copper Litz wire and concrete.
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Fig. 4.17: System block diagram showing the circulating power test setup.

4.3 Test Setup

4.3.1 Circulating Power Test

An image of the hardware setup used for power electronics testing is shown in Fig. 4.18.

The primary coil is covered under the grates and the secondary coil is mounted under a

movable cart. To avoid dissipating a large amount of power and to reduce the system

complexity, a circulating power setup is used to test the electronics. The system block

diagram is shown in Fig. 4.17. The three power connectors (red, yellow and blue) used in

the setup are the same as shown in Fig. 4.17. A DC bus voltage of 600 V is chosen as the

input voltage and emulated output battery voltage. An extendable DC cable is used to

connect the output of the secondary diode bridge rectifier to the primary DC link.

4.4 Results and Discussion

4.4.1 Wireless Power Transfer Tests

Results from the wireless power transfer tests are shown in Fig. 4.19. The primary

side track RMS current is shown on the X-axis with DC-DC efficiency and output DC

power shown on two different Y-axes. The results show efficiencies above 93% over the

entire operating range of the system from 2 kW to 56 kW. Scope waveforms for the inverter

output voltage (bridge voltage), primary track current and the DC output current are shown
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Fig. 4.18: Hardware test setup for testing the WPT system and the corresponding power
electronics.

in Fig. 4.20. At a 110 A RMS track current at 85 kHz, the designed primary pad transfers

56 kW of power wirelessly across a coil-to-coil air-gap of 203.2 mm. The power variation in

this test is achieved by adjusting the DC link voltage. Hence the nearly constant efficiency

throughout the operating range. Power variation using a front-end DC-DC converter or

other modulation schemes for the H-Bridge inverter would result in a more conventional

efficiency profile.

4.4.2 Structural Testing

The structural properties of the concrete-embedded pad are tested using fatigue cycling

and a three-point bending test. Strain measurements and other results of the structural tests

are beyond the scope of this dissertation and can be found in [93]. Three concrete-embedded

pad prototypes as shown in Fig. 4.21 are constructed and tested. The coil prototypes in

Fig. 4.21 are half-length replicas of the pad shown in Fig. 4.16 and are embedded in lane

width concrete slabs. The objective of fatigue cycling is to observe how the electrical
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Fig. 4.19: Graph showing the DC-DC efficiency at various output power levels.

Fig. 4.20: Scope waveforms showing the inverter output voltage, track current, and DC
output current in the system.
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properties of the concrete-embedded pad vary with cyclical loading designed to emulate

heavy-duty vehicular traffic. The three-point bending test is performed to observe how the

DWPT behaves under extreme failure modes.

(a) (b)

Fig. 4.21: Three concrete-embedded 1 m x 1 m pad prototypes a) before concrete pours b)
after concrete pours.

Fatigue Cycling Test

An image of the fatigue cycling test setup is seen in Fig. 4.22. The approximate location

of the coil inside the concrete slab is also shown in the figure. The fatigue cycling test is

designed to emulate the behavior of a vehicle driving over the concrete slab multiple times.

The support beam is set to replicate the force distribution from the tires of the vehicle and

the base used under the slab is identical to the sub-grade below a pre-cast concrete slab.

The quality factor Q of the pad is measured throughout the duration of different fatigue

cycling tests. The results are presented in Fig. 4.23. Three different loading conditions are

tested as shown in Table. 4.5, where 32 kip emulates the force exerted on the concrete slab

by a fully loaded semi-truck (1 kip = 4448 N).
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Fig. 4.22: Hardware test setup for testing the WPT system and the corresponding power
electronics.

Table 4.5: Testing conditions for fatigue cycling

Test Force Cycles

Test 1 32 kip 300000
Test 2 50 kip 10000
Test 3 64 kip 6000

Three-Point Bending Test

The three-point bending test is performed to understand how the slab behaves under

catastrophic failure. While this is unlikely to happen in a daily-use scenario, the results from

this test provide information on how a pavement failure would affect the electrical system.

Based on the variation in quality factor, preventative safety measures can be installed in

place to prevent fault propagation through the electrical system in the event of a structural

failure. Fig. 4.24a shows the approximate location of the coil inside the concrete slab.

Results from the three-point bending test are shown in Fig. 4.25 and Fig. 4.26. Fig. 4.25

shows a frequency sweep of the pad impedances measured before and after failure and

Fig. 4.26 shows the variation in pad quality factor over the duration of the test. The abrupt

change in Q immediately after slab failure is due to an increase in the pad ESR. The pad

inductance is observed to still remain in the same range as before the test. This shows that

the embedded wireless charging pad is still functional even after a catastrophic failure in

the concrete slab. Further, the location and propagation of cracks in the slab indicate that
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(a)

(b)

(c)

Fig. 4.23: Variation in pad Q over the duration of the fatigue cycling tested at a) 32 kip
b) 50 kip c) 64 kip.
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(a)

(b)

Fig. 4.24: Test setup used for the three-point bending test a) before pad failure b) after
pad failure.
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Fig. 4.25: Frequency sweep measurement of the concrete-embedded pad impedance before
and after 3-point bending test failure.

Fig. 4.26: Q measurement during the 3-point bending test.
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the WPT coil provides some amount of additional reinforcement as well.

It should be noted that the initial pad quality factor Q is different in Fig. 4.23 and

Fig. 4.25 due to the location of the primary pad inside the concrete slab and the orientation

of the slab. In the fatigue cycling tests, the pad is closer to the top of the concrete slab and

hence is closer to the loading ram and spreader beam which are both made of metal. This

results in a lower Q compared to the three-point bending test, where the pad is closer to

the bottom of the concrete slab.

4.4.3 Summary

The design of a fully functional pavement-integrated DWPT system is presented in

this chapter. The designed system is tested under accelerated real world conditions to

observe the characteristics of the system in the long-run. It is observed that the DWPT

system functions as intended during all the structural testing and remains functional even

after catastrophic failure. This is a significant improvement from prior implementations of

pavement-embedded WPT pads.



CHAPTER 5

MULTI-PAD RECEIVER COILS

5.1 Design Considerations

Dynamic wireless power transfer (DWPT) technologies can recharge electric vehicles

(EVs) while in motion [81,94,95]. This reduces range anxiety and helps increase EV adop-

tion [103]. However, initial infrastructure costs for DWPT systems are significant due to the

scale of deployment required [104–106]. These systems can become economically viable only

when primary side (transmitter) infrastructure can be reused for different vehicle classes.

Due to a wide range of power requirements, the use of modular standardized receivers is

seen as a feasible solution [87,107].

Larger vehicles typically have higher power requirements and greater energy consump-

tion per mile [108]. The use of modular receiver pads makes use of this relation to ensure

that the wide range of power needs are met for different vehicle classes. This work explores

the use of modular receivers to scale the power transfer capability of dynamic wireless charg-

ing systems. An electric sports utility vehicle (SUV) is chosen as the test vehicle. WPT3

secondary pads as specified by the SAE J2954 standard are chosen to be used as individual

modules in a multi-pad receiver [109]. The vehicle choice and choice of the secondary pad

are arbitrary and chosen for ease of demonstration. Three elongated primary pads are used

to generate the required alternating magnetic field at 85 kHz.

The wireless inductive power transfer system consists of three rectangular primary

pads and three square WPT3 receiver pads specified by the SAE J2954 standard. The

overlapping rectangular transmitter pads designed in [28] are used in this work and the

transmitter design is fixed for all the analysis that follows. The three primary pads are

capable of transferring 30 kW of power each. The system is intended to be a scaled down

demonstration of the use of multi-pad receivers to vary the power level based on the vehicle
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power requirements. The coupling coefficient (k) profiles between each of the three primary

pads and each of the three secondary pads is as shown in Fig. 5.1. The simulated coupling

coefficient (k) is less than 0.07. This is due to the primary pads being elongated and the

individual receiver pads being much smaller than the primary pad.

Fig. 5.1: Dynamic profiles for coupling coefficients between primary pads and secondary
pads.

5.2 Connection Methods for Multiple Receivers

Multiple receivers can be connected in series, parallel or operated as independent re-

ceivers. Fig. 5.2 and Fig. 5.3 describe the three different connection methods for multiple

receivers. This analysis considers only three secondary pads due to space constraints on

the available light-duty vehicle, but can be extended to any number of secondary pads.

Primary side control as specified by the SAE J2954 standard is assumed for all comparisons

presented in this work [109].

5.2.1 Independent Receivers

Operating each receiver pad independently with three compensation networks and three

rectifiers allows for a modular receiver system. One or more receivers can be disabled de-

pending on the vehicle power requirements. This connection method adds significant system
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complexity. To set a required power reference, the primary controller needs information on

the number of individual receiver pads being energized. This further complicates control

and requires a communication link between the primary and secondary sides of the system.

Fig. 5.2: Multi-pad receivers operating as independent receivers.

Advantages

Having independent receivers requires multiple smaller compensation networks and

rectifiers to process the received wireless power. In stationary charging scenarios when only

one or two receivers are coupled, depending on the shape and size of the available primary

pad, the multi-pad receiver can be operated as a single pad receiver, minimizing losses in the

other two receiver pads. Additionally, in DWPT systems, having independently operated

receiver pads allows for scalable power transfer without having to adjust the primary side

track current.

Disadvantages

In the event one or more receiver pads are damaged, the vehicle system needs to detect

the failure and lower the desired total power level to ensure that each of the remaining

receiver pads stay within their ratings. Similarly, coupling imbalances and tuning network
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component tolerances can also contribute to a mismatch in receiver power.

In DWPT systems it is likely that the coupling between an energized primary pad to

the individual secondary pads may be imbalanced. For instance, this can occur when a

vehicle is driving onto a DWPT system, and some secondary pads are over the primary

pad and others haven’t reached the primary pad yet. In this case the power reference for

the primary side power controller needs to reflect the number of receiver pads over the

primary pad, i.e. the number of receiver pads with sufficient coupling to the primary pad.

This information is difficult to estimate without accurate and low-latency vehicle position

sensors. This complicates both primary and secondary side controls.

While independent receivers are expected to improve system efficiency and versatility,

they would require complex sensing and control on the secondary side and are not analyzed

in this chapter.

5.2.2 Series or Parallel Connected Receivers

Receiver pads can be connected in both series or parallel combinations to effectively

form a larger receiver pad. The parallel and series connected multi-pad receivers are shown

in Fig. 5.3a and Fig. 5.3b respectively.

(a) (b)

Fig. 5.3: Multiple receivers connected in a) parallel and b) series.
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Advantages

Both parallel and series configurations simplify primary side control since they require

only one power reference and can function even without a communication link between

the primary and secondary sides of the system. When connected in series, all the receiver

pads are forced to operate in phase since the same current flows through all the coils. The

multi-pad receiver effectively behaves as an elongated single-pad receiver. With the parallel

connection of receivers, the effective receiver pad voltage is lowered and thus simplifies the

insulation and high voltage safety requirements.

Disadvantages

Parallel connected secondary pads have a difference in induced open circuit voltage

(Voc) due to the cross coupling between receivers and can cause issues with undesirable

currents circulating between the secondary pads. In case of series connected secondary

pads, when the car arrives on the first primary pad or leaves the last primary pad, all three

modules of the multi-pad receiver are still energized even though they are not sufficiently

coupled to the primary pad. All the modules have the same current flowing through them

even when coupling is insufficient for a few of the modules to receive power. This can

marginally decrease the energy efficiency of the system.

5.2.3 Analytical Comparison

Since the primary and secondary pad designs are fixed, the receiver pad open circuit

voltage (Voc) and the secondary side required power (P req) are used to calculate the values

of the secondary compensation network as described in (5.1) to (5.6) as follows

Cser2 =
1

ω(Zpad,sec − Zser,sec)
(5.1)

Cpar2 =
1

ω(Zpar2)
(5.2)
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Lser2 =
Zser2

ω
(5.3)

where the impedances Z pad,sec, Z ser,sec and ω are defined as follows

Zpad,sec = ωLsec (5.4)

Zser,sec = Zpad,sec +
1

ωCser2
=

Voc

Ibr2
(5.5)

ω = 2πf (5.6)

where I br2 is the diode bridge AC input current in order to charge the battery with the

required power P req (30 kW) and f is the operating frequency of the system (85 kHz). The

secondary pad Voc is measured when the primary pad is energized with nominal track

current.

Table 5.1: Secondary Side LCCL Compensation Values for Series and Parallel Connected
Multi-Pad Receivers

Component Series Parallel

Cser2 32.24 nF 323.52 nF
Cpar2 423.99 nF 1.40 uF
Lser2 8.27 uH 2.49 uH

Table. 5.1 presents the compensation network values for both series and parallel con-

nections when tuned to deliver the same output power of 30 kW to the receiver side battery.

The simulated values for current and voltage stresses for each system are presented in Ta-

ble. 5.2 and Table. 5.3. I rms, V rms and V pk represent the root mean square (RMS) current,

voltage and the peak voltage seen across each component in the compensation network

respectively. Reactive power (S ) which is used to compare the two compensation networks

can be found as follows.
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S = Irms × V rms (5.7)

The reactive power presented in (5.8) does not take into account the shape of the voltage

waveforms. The presence of a higher peak in the voltage waveforms requires appropriately

sized capacitors. Therefore, the V pkI rms metric is used to compare the capacitor banks.

This takes into account the peak voltage stress on a particular capacitor bank in addition

to the RMS current flowing through it.

Table 5.2: LCCL Compensation Network Sizing for Series Connected Multi-Pad Receiver

I rms (A) V rms (V) V pk (V) S (kVA) V pkI rms(kVA)

Lsec 75 4802 6837 360.15 512.78
Cser2 75 4374 6215 328.05 466.12
Cpar2 123 541 778 66.54 95.69
Lser2 85 395 886 33.57 75.31

Table 5.3: LCCL Compensation Network Sizing for Parallel Connected Multi-Pad Receiver

I rms (A) V rms (V) V pk (V) S (kVA) V pkI rms(kVA)

Lsec 245 1795 2575 439.77 630.88
Cser2 245 1417 2018 374.16 494.41
Cpar2 292 388 572 113.30 167.02
Lser2 89 173 479 15.40 42.63

It is observed that for the simulated system, the series connected multi-pad receiver is

the better solution due to lower reactive power requirements on the compensation network

elements. Additionally, in the parallel configuration, the presence of high currents in the

inductors Lsec and Lser2 requires a high gauge litz wire or a multi-filar winding with multiple

current paths connected in parallel. This introduces practical challenges such as a larger

bend radius and uneven current sharing in the parallel paths and requires complicated

interleaving in order to resolve these challenges. Considering the above factors and also a

lower V pkI rms on the elements Cser2 and Cpar2, the series connected multi-pad receiver is



76

chosen for hardware implementation and is presented in the Section 5.4.

5.3 Simulation Models

The series and parallel connection methods for multi-pad receivers are simulated in

PLECS to understand the trade-offs between the two. The system is modeled using the

methods presented in Chapter 3. The simulation model is experimentally validated using

the series connected multi-pad receiver.

Simulation models of the wireless power transfer system are modeled in ANSYS, PLECS

and LTSpice. The inductance matrix and coupling coefficients of the three primary pads

and three secondary pads are obtained from ANSYS. These dynamic profiles are fed into a

PLECS simulation model and simulated along with the power electronics and compensation

networks. Nominal operating point simulations are performed in LTSpice to fine tune

compensation networks and analyze system transients.

5.3.1 ANSYS Maxwell

Three independent receiver pads and three transmitter pads are simulated in ANSYS

with an optimetric sweep to simulate the dynamic profile of the inductance matrix. The

3D model used for simulation is shown in Fig. 5.4.

Fig. 5.4: DWPT system modeled in ANSYS Maxwell for FEM simulation.
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5.3.2 PLECS

The DWPT system is modeled in PLECS using ideal switches and diodes. The resonant

networks are modeled as ideal elements in series with their equivalent series resistances

(ESRs). The values of these ESRs are obtained using a Hioki IM 3536 LCR meter. A

screenshot of the PLECS simulation model is shown in Fig. 5.5.

Fig. 5.5: DWPT system modeled in PLECS for circuit simulation.

5.3.3 LTSpice

A circuit simulation is designed to evaluate the current and voltage stresses on the

coils at various operating points. This simulation does not consider the dynamic profile

of coupling between the primary and secondary coils. The coupling coefficient k can be

adjusted in the simulation to obtain the various voltage and current stresses on different

components in the system. Screenshots of the LTSpice simulation are shown in Fig. 5.6

and Fig. 5.7. The input DC source is modeled as a 600 V voltage source along with cable

parasitics. The DC output of the rectifier on the secondary side is modeled as a 360 V DC

source.
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Fig. 5.6: H-bridge inverter and rectifier model in LTSpice to simulate the WPT system.

Fig. 5.7: Primary and secondary resonant tank model with constant coupling coefficient.

The three receiver pads can be connected in series or parallel as shown in Fig. 5.3. A

screenshot of the simulation model with the series connection and the resultant Voc waveform

are shown in Fig. 5.8a and Fig. 5.8b respectively. Similarly the three receivers are connected

in parallel as shown in Fig. 5.9a and the corresponding Voc simulation is shown in Fig. 5.9b.

The performance of series and parallel connections is evaluated by simulating the open
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circuit voltage obtained at the input of the secondary compensation network. It is observed

that the obtained open circuit voltage is three times higher for the series connection when

compared to the parallel connection. This indicates that the effective mutual inductance

between the primary pads and the secondary receiver arrangement is the same in both the

series and parallel configurations.

(a) (b)

Fig. 5.8: Series connected three-pad receiver a) PLECS schematic b) Voc waveform.

(a) (b)

Fig. 5.9: Parallel connected three-pad receiver a) PLECS schematic b) Voc waveform.

The multi-pad receiver system is simulated in Simulink/PLECS using time-varying

mutual inductance profiles. The detailed self- and mutual inductance values for different

longitudinal misalignments are obtained from ANSYS Maxwell. The three receivers are

connected in series configuration and the total inductance of the three receivers is shown
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as Lsec in Fig. 5.10, which shows one primary pad and the secondary multi-pad receiver.

To make a fair comparison between the two configurations, the output power is required

to remain the same in both cases. The secondary LCCL compensation networks in the

series and parallel configurations are tuned accordingly. The primary LCCL compensation

values are shown in Table. 5.5. The primary pad compensation network is tuned to supply a

constant track current of 43 A, which is the nominal value required for 30 kW power transfer

to the secondary side battery load.

Fig. 5.10: Wireless power transfer system overview.

As explained in Section 5.2.2, both the series and parallel connections have their ad-

vantages and disadvantages. The decision to pick one over the other depends on practical

considerations such as current and voltage stresses on the compensation network and opti-

mal sizing of the compensation elements.

The simulated secondary side battery current waveform is shown in Fig. 5.11. The

simulated current profile shows dynamic power transfer to the multi-pad receiver at a vehicle

speed of 1000 mph (1600 km/h) with the battery current set to be 360 V. The profile can

be scaled down to match realistic vehicle speeds while keeping the shape constant. The

unrealistic vehicle speed is used to speed up the DWPT circuit simulation in PLECS.

5.4 Hardware Development

The individual primary pads each have a self-inductance of 175 µH and each module of

the three-pad receiver has a self-inductance of 40 µH. The coupling coefficient (k) profiles

between the primary pads and the secondary pads are shown in Fig. 5.1. In Fig. 5.1, kmn



81

Fig. 5.11: Simulated battery current waveforms showing dynamic power transfer to the
multi-pad receiver.

denotes the coupling coefficient between the mth primary pad and the nth secondary pad.

Similarly, Mmn denotes the mutual inductance between the mth primary pad and the nth

secondary pad. The coupling coefficient is defined as follows [89]

kps =
Mps√
LpLs

(5.8)

where Lp and Ls are the self-inductances of the primary and secondary coils respectively

and Mps is the mutual inductance between them.

While the coupling coefficient in Fig. 5.1 is low, the mutual inductance still remains suf-

ficiently large for the required system, owing to the higher self-inductances of the elongated

primary pads. The nominal mutual inductance between individual primary and secondary

pads is estimated to be 5.5 µH.

The measured self-inductance for the three primary pads is shown in Table 5.4. The

measurements are obtained using a Hioki IM 3536 LCR meter. This measurement includes

the additional inductance due to cables going from the trench into the cabinet inside the

shed. The variation in the self-inductances of the three pads is due to the variation in cable

lengths routed from the shed to the trench in the test track. These variations are tuned out

by making adjustments to the three primary compensation networks.

The system overview showing the arrangement of three primary and secondary pads
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Table 5.4: Primary Pad Self-Inductances

Lpri (µH)

Pad 1 171.45
Pad 2 177.86
Pad 3 181.59

Fig. 5.12: System overview with three transmitter pads and a three-pad receiver.

can be seen in Fig. 5.12 and an overview of the wireless power transfer system is shown in

Fig. 5.10.

5.4.1 Vehicle Detection System

The RFID vehicle detection system consists of a Raspberry Pi 3 B+, ThingMagic

USB Pro, and Laird S9025PL RFID antenna. The program for the system utilizes the

“RPI.GPIO” library and a python wrapper for the ThingMagic USB Pro API. The system

works by constantly polling for a specific electronic product code (EPC), which corresponds

to the RFID tag on the vehicle. When the vehicle is detected reliably, a signal is sent over a

wireless communication link to the controller of the first primary pad to start its detection

mode. The distance of the RFID antenna from the start of the first primary pad determines

how early the first primary pad turns on. The RFID vehicle detection hardware is shown

in Fig. 5.13.
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Fig. 5.13: Hardware used for the vehicle detection system.

5.4.2 Compensation Networks

The secondary series compensation capacitors (Cser2) are placed close to the receiver

pads to decrease the length of high voltage cabling required. These capacitors are mounted

close to the receiver pads and placed in an acrylic water resistant enclosure as shown in

Fig. 5.14. The Cser2 capacitor bank is also distributed between the three pads to avoid a

large voltage from building up at any two terminals on the receiver system. The leads are

terminated and connected to obtain a series combination of the three secondary pads and

the distributed series compensation capacitor bank. The two leads coming from the receiver

pads and series compensation caps are terminated with an Anderson power connector (blue)

for quick connection and disconnection in case the system needs to be modified.

Similarly, on the primary side, the series compensation capacitors shown in Fig. 5.15

are placed in a weather proof enclosure under the primary pads. This reduces the amount

of high voltage cabling required from the shed cabinets to the trench.

The primary side compensation network consists of a series inductor (Lbr), parallel ca-

pacitor (Cpar) and series capacitor banks (Cser). All the primary and secondary compensa-

tion capacitor banks are built using standard capacitor values available. Illinois Capacitors

HC1, HC2, HC3, HC4 and HC6 series of capacitors are used for the compensation network.

The details regarding primary compensation network are given in Table 5.5.
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Fig. 5.14: Three receiver pads connected in series with compensation capacitors - top view.

Fig. 5.15: Series compensation capacitors mounted under the primary pad.

5.4.3 Pad Weatherproofing

The three primary pads are embedded in a thermally conductive polyurethane epoxy

(Epoxies 50-2151 FR) to protect it from dust, debris, rain and snow. Each pad is potted in

two steps to allow pad overlap even after potting. The fully potted primary pads are shown

in Fig. 5.16. The epoxy is chosen for its curing properties and good thermal conductivity.

Since the pads have restricted air-flow after being potted, it is essential that the epoxy is

thermally conductive in order to move heat away from the coil and ferrites. However, due to
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Table 5.5: LCCL Compensation Values for the Primary Pad

Component Value

Lbr 8.7 µH
Cpar 189 µF
Cser 49 µF

Fig. 5.16: Three primary pads pot-
ted and placed in the outdoor trench.

the transient nature of dynamic wireless charging and efficient turn-on and turn-off of the

primary pads during system operation, no significant thermal challenges are encountered.

5.5 Transmitter Power Electronics

The transmitter side power electronics include the primary series capacitors, the pri-

mary parallel capacitor, the primary series inductor, the inverter and the cooling system. In

addition to these, the primary side electronics also consist of a controller board and current

sensors to detect the DC input current going to the inverter and the AC inverter output.

Excluding the primary pad and series compensation capacitors, the rest of the electronics

are placed in a cabinet inside a shed. Three primary side power electronics assemblies are
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mounted inside the cabinet and connected to each of the three primary pads as shown in

Fig. 5.17. An image of the shed, test track, and vehicle used is as shown in Section 5.7

Fig. 5.17: Primary side electronics and compensation network.

5.6 Receiver Power Electronics

The receiver side power electronics includes the secondary series capacitors, the sec-

ondary parallel capacitor, the secondary series inductor, the diode bridge rectifier and cool-

ing system. Individual receiver pads are constructed according to WPT3 specification (rated

to 11.1 kVA) described in the SAE J2954 standard [109]. The receiver pads and the series

compensation capacitors are mounted under the vehicle as shown in Fig. 5.18. The remain-

ing elements of the secondary side power electronics system are mounted inside the vehicle

as shown in Fig. 5.19. The DC output of the diode bridge rectifier is directly connected to

an Orion battery management system (BMS) unit interfaced to the high voltage battery.

5.7 Testing and Results

To validate the simulation model developed and to experimentally test the three-pad

receiver, the following hardware setup shown in Fig. 5.20 is developed. Three elongated
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Fig. 5.18: Three receiver pads and series compensation capacitors mounted to the EV -
bottom view.

Fig. 5.19: Secondary side electronics and compensation network inside the vehicle.
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Fig. 5.20: Hardware DWPT system overview.

rectangular transmitter pads form a primary track which is 5.15 m long. The air-gap be-

tween the primary and secondary coils is set to be 200 mm from the bottom of the receiver

pad to the top of the primary pad. This value is calculated based on the vehicle ground

clearance and depth of the primary pad inside the roadway and the system is designed

accordingly.

5.7.1 Track Current Tests

The system is energized without the receiver side present on the track. This test

verifies the primary side tuning between the series inductor and the parallel capacitor. A

well-tuned primary compensation generates a sinusoidal current source through the primary

pad and series compensation capacitors. The waveform in Fig. 5.21. shows the track current,

inverter output current and voltage during a track current test. The test is performed with

DC input voltage of 600 V. Based on the design of the primary compensation network, a

track current of 56 A is expected. This can be calculated as explained in Section 2.2. The

primary electronics and test setup inside the shed are shown in Fig. 5.22.

5.7.2 Open Circuit Voltage Tests

The simulated mutual inductance profile can be validated by performing the open
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Fig. 5.21: Scope waveforms showing inverter output current, output voltage and track
current through the primary pad.

Fig. 5.22: View of the test setup inside the shed.

circuit voltage tests. The receiver pad is disconnected from the secondary compensation

network and the open circuit voltage induced on the receiver pads is measured across the

leads coming from the receiver pads. The profile is measured by energizing the primary

pad with a low track current and driving the vehicle over the pads in a straight path.

The simulated and measured Voc profiles with one transmitter pad energized are shown in

Fig. 5.23b and Fig. 5.23a respectively. Similarly, the simulated and measured Voc profiles

with two transmitter pads energized are shown in Fig. 5.24b and Fig. 5.24a respectively. It

should be noted that the magnitude of the voltage changes with coupling factor (or mutual
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(a) (b)

Fig. 5.23: Single primary pad energized: a) Simulated Voc profile b) Measured Voc profile.

(a) (b)

Fig. 5.24: Two primary pads: a) Simulated Voc profile b) Measured Voc profile.

inductance). This test verifies the shape of the dynamic open circuit voltage profile and

validates the simulation model. The simulations in Fig. 5.23a and Fig. 5.24a assume a

vehicle speed of 60 mph and the corresponding time scale shown is 0.2 s per division on the

x-axis. The x-axis shows the time from 0 to 3.565 33 s. Simulation time can be improved

by setting the vehicle speed to be higher. The hardware Voc results are obtained using a

primary pad track current of 25 A, which is lower than the nominal track current of 56 A.

This dynamic profile retains its shape and scales proportionally when the track current is

varied.

5.7.3 Electric and Magnetic Field Safety

The leakage magnetic (B) and electric (E) fields are measured at three different loca-

tions in and around the RAV4 EV while the wireless charging system is operational. A

Narda EHP-200 probe is used to measure the fields. The measurement locations are shown

in Fig. 5.25. The measured field values are shown in Table 5.6.
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(a)

(b) (c)

Fig. 5.25: Field probe in a) position 1 outside the RAV4 EV b) position 2 on the driver seat
inside the RAV4 EV c) position 3 beside the receiver power electronics inside the RAV4
EV.
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Table 5.6: Measured Leakage Field Values

Position Location Field Measurement

1 Outside the car B 5.91 µT
1 Outside the car E 66.93 V/m
2 Driver seat B 0.16 µT
2 Driver seat E 0.48 V/m
3 Next to the receiver power electronics B 7.09 µT
3 Next to the receiver power electronics E 152.25 V/m

5.7.4 Power Transfer Tests

Once the system track current and open circuit voltage profiles are verified, the system

is functional and ready for power transfer tests. The system is energized at lower voltages

and tested to observe power transfer. Once the waveforms are as expected, the system is

energized to its full input voltage and tested. Two results from the power transfer tests are

shown in Fig. 5.26 and Fig. 5.27. In Fig. 5.26, a DC input voltage of 500 V is supplied to

the primary inverter. The DC input current is measured at 67.33 A with an inverter output

current of 89.65 A when the receiver is present on the track. The receiver side waveforms

indicate 75 A of DC current going into an auxiliary battery on the electric vehicle at a

battery voltage of 365 V. In Fig. 5.27, the bridge voltage, bridge current and track current

measured on the primary side when the system operates with an input DC voltage of 550 V.

A peak DC current of 78 A at a battery voltage of 373 V is observed at the secondary side

rectifier output. This corresponds to a power transfer of 29 kW and the DC-DC efficiency

is found to be 88%.

The DWPT system is tested at varying speeds to validate the system response, detec-

tion, and automated turn-on of the individual primary pads. Two different speeds of 7 mph

and 22 mph are considered. The higher speed limit is set by the vehicle safety limitations

on the test track and the weather conditions. The system operates without active power

regulation in these tests and hence the profiles are expected to stay the same even at high-

way speeds of 60 mph to 80 mph. The dynamic profiles of battery current seen in Fig. 5.28

closely resemble the simulated battery current shown in Fig. 5.11. The human error in-

volved in aligning the vehicle perfectly with the primary pads results in slight variations in
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Fig. 5.26: Scope waveforms showing inverter output current, output voltage and input DC
current.

Fig. 5.27: Primary side waveforms showing inverter (bridge) output voltage and current
along with the track current.
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(a)

(b)

Fig. 5.28: Secondary side measured battery current and battery voltage showing a) 29.6 kW
delivered to the battery at 7 mph vehicle speed b) 29.8 kW delivered to the battery at 22 mph
vehicle speed.



95

the coupling profile and actual power transfer. It can be observed that even without active

power regulation, a relatively smooth profile of power transfer can be obtained during dy-

namic wireless power transfer by adjusting the coil overlap and the turn-on and turn-off of

adjacent primary pads.

Fig. 5.29: Scope waveforms showing inverter output voltage for all three primary pads.

At 7 mph, the primary side waveforms showing the three bridge (inverter output) volt-

ages are shown in Fig. 5.29. A detection mode can be seen on Bridge Voltage 1 waveform.

This mode energizes the first primary pad at a low track current (>10 A) to enable vehicle

detection. As the receiver pad comes within the acceptable coupling range, a change in DC

input current is detected and the first primary pad ramps up to its nominal value of track

current. The pad turn-on and turn-off transitions are achieved using just the DC current

and inverter output current sensors. Communication between the primary pad controllers

is limited to a fiber optic link carrying a synchronization signal to ensure that the three

pads operate in phase.

The three different track current waveforms and the total input DC current to the
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Fig. 5.30: Scope waveforms showing primary pad currents and total input DC current at
7 mph and a peak power transfer of 29.6 kW to the vehicle battery.

system can be seen in Fig. 5.30. The low track current in detection mode is clearly visible

in this figure. Further, the DC input current profile also resembles the battery input DC

current profile on the secondary side as shown in Fig. 5.28a.

The primary side waveforms from the 22 mph dynamic power test with all three pads

are shown in Fig. 5.31. The figure shows the three inverter output voltages and the three

individual DC input currents. The sum of all the three input DC currents results in a profile

similar to the one in Fig. 5.30. The presence of an approaching vehicle is detected using an

RFID antenna and the first primary pad is set to its detection mode. Once in the detection

mode, the system automatically ramps up the power transfer to the secondary when the

minimum coupling threshold is exceeded.

The three primary track currents can be seen in Fig. 5.32. The change in track current

from the low phase-shift mode to the detection mode and the change in track current from

detection mode to power mode is also seen in the figure.
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Fig. 5.31: Scope waveforms showing inverter output voltages and input DC currents for all
three primary pads at 22 mph vehicle speed and a peak power transfer of 29.8 kW to the
vehicle battery.

Fig. 5.32: Scope waveforms showing the three primary track currents at 22 mph vehicle
speed using automated system turn-on.
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5.7.5 Summary

This chapter presents the design of a 30 kW three-pad receiver system for dynamic

wireless power transfer applications. Three Z3 receivers rated to 11.1 kVA are used to

receive 30 kW of power from an electrified roadway, demonstrating the scalability of the

system. Despite the standard Z3 pads being sub-optimal for dynamic wireless charging,

this work develops a usable DWPT system with multiple Z3 standard pads.

In the current work, an electric SUV is used as the test vehicle to emulate a larger

vehicle using multi-pad receivers. In reality, for an SUV or a sedan sized vehicle, an optimal

receiver system would only use have one receiver pad due to the space constraints under

the vehicle. And larger vehicles like semi-trucks and buses would have two or more pads in

their receiver system.



CHAPTER 6

SAFETY AND COMPLIANCE FOR DWPT SYSTEMS

6.1 Introduction

Most electronic devices generate electro-magnetic (EM) fields which can interfere with

the operation of other electronic devices. When these EM fields are sufficiently high, they

can affect human health and well-being as well as interfere with other devices. Therefore, it

is imperative to understand the sources of these fields and the effects they have on human

beings and other electronic devices. Few of the major standards organizations regulating

the amount of acceptable EM emissions are

• Federal Communications Commission (FCC)

• International Commission on Non-ionizing Radiation Protection (ICNIRP)

• International Electrotechnical Commission (IEC)

• Comité International Spécial des Perturbations Radioélectriques (CISPR)

• International Standards Organization (ISO) and

• Society of Automotive Engineers (SAE)

Due to a lack of standards specific to dynamic wireless power transfer, DWPT systems

typically follow the safety and compliance guidelines set for stationary wireless charging.

6.2 ICNIRP Limits

From a safety standpoint, the ICNIRP standard is widely accepted as the benchmark for

compliance. The ICNIRP standard specifies a limit of 27.5 µT for 85 kHz wireless charging.

This is the maximum magnetic flux density limit for a wireless charging product that

is accessible by the general public. Occupational limits tend to be higher, but are not
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Table 6.1: Table showing the CISPR 11 limits for wireless power transfer [2].

Frequency
range (kHz)

Limits for a measuring distance D in meters
Magnetic field quasi-peak (dBµA/m)

≤1 kW 1 kW - 7.7 kW ≥7.7 kW
D = 10 m D = 3 m D = 10 m D = 3 m D = 10 m D = 3 m

19-25 57 81.5 72 96.5 87 111.5

25-36 22.6-21 47.1-45.5 22.6-21 47.1-45.5 22.6-21 47.1-45.5

36-40 56.2 80.7 71.2 95.7 86.2 110.7

40-55 20.6-19.3 45.1-43.8 20.6-19.3 45.1-43.8 20.6-19.3 45.1-43.8

55-65 54.4 78.9 69.4 93.9 84.4 108.9

65-79 18.5-17.7 43-42.2 18.5-17.7 43-42.2 18.5-17.7 43-42.2

79-90 52.8 77.3 67.8 92.3 82.8 107.3

90-130 17.2-15.6 41.7-40.1 17.2-15.6 41.7-40.1 17.2-15.6 41.7-40.1

considered as a target specification when designing consumer goods. Some manufacturers

also target the lower 15 µT limit to ensure safe operation even in the vicinity of pacemakers.

With stationary wireless chargers, it is likely to have pedestrians in close proximity to

the radiated magnetic field. Hence, it is essential to minimize the leakage magnetic field and

comply with the ICNIRP standards. However, with dynamic wireless charging, pedestrians

or human beings are not expected to be in close proximity to the wireless charging system.

In such cases, it is still essential to meet the product performance and EMC standards such

as the CISPR standards.

6.3 CISPR Limits

The CISPR limits are aimed at electro-magnetic compliance (EMC) and preventing

interference with other electronic devices rather than a health and safety perspective. The

CISPR 11 standard specifies the EM emission limits for WPT systems. According to the

CISPR 11 standard, the radiation produced by wireless chargers is considered intentional

radiation for the purpose of transferring electro-magnetic energy. Further, WPT systems

have a relatively strong EM field in their fundamental frequency of power transfer due to the

the sinusoidal coil currents. This makes it easy to relax the standards in specific frequency

ranges that are dedicated for use in wireless charging technologies.

The CISPR 11 standard specifies the magnetic field quasi-peak limits for radiated

emissions generated by wireless power transfer systems. A quasi-peak measurement is a
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Table 6.2: CISPR 11 limits for harmonic band emissions for 85 kHz WPT in Japan [3].

Radiated emission limits
of fundamental wave

Radiated emission limits
in other bands

79 - 90 kHz 9 - 150 kHz 150 kHz - 30 MHz

68.4 dBµA/m at 10 m
(quasi-peak)

23.1 dBµA/m at 10 m
(quasi-peak),

except 79-90 kHz

39 dBµA/m at 0.15 MHz to
3 dBµA/m at 30 MHz

Exceptions:
for 158 - 180 kHz,

237 - 270 kHz,
316 - 360 kHz,

and 395 - 450 kHz
emission limits are higher

than above by 10 dB

weighted measurement based on how often the peak value is repeated. The higher the

rate of peak value repetition, higher the quasi-peak value. Table. 6.1 shows the radiated

emission limits for various fundamental frequency bands at different measuring distances of

D = 3 m and D = 10 m. It can be observed that the commonly used WPT frequency bands

in the multiples of 20 kHz have more relaxed limits on the radiated emissions compared to

the other frequency bands in the table. Table. 6.2 show the limits on the fundamental and

higher order harmonics for 85 kHz EV wireless power transfer adopted by Japan in 2016 [3].

The highest power level currently considered is 7.7 kW.

6.4 Booster Pad Example

The Booster Coil DWPT pad developed in [23] is considered as an example DWPT

system and methods to reduce the leakage magnetic field are evaluated. An image of the

Booster Coil pads is shown in Fig. 6.1. The Booster Coil pad is designed to have additional

turns at the ends of a segmented rectangular pad to help increase the ampere-turns available

and boost the power transfer during the transition from one pad to another. These additional

turns also contribute to the leakage magnetic field generated by the DWPT system. This

work presents the different ways of reducing leakage fields using both passive and active

shielding methods in DWPT systems and a simulation analysis is performed to evaluate

an active shielding method. Compliance limits specified by the CISPR 11 standard are
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considered as the target magnetic field levels in this work.

Fig. 6.1: Image of Booster Coil pads in the outdoor trench.

To measure the leakage magnetic field of the system and to evaluate different shielding

methods, a 30 kW DWPT system is modeled. The FEM models to evaluate coil parameters

and leakage fields are developed using ANSYS Maxwell and the circuit models to evaluate

power transfer and tuning networks are developed using LTSpice.

6.4.1 ANSYS Model

The Booster Coil pad is modeled in ANSYS as shown in Fig. 6.2. A 4.7 m × 1.8 m steel

plate is considered as the metal chassis of the vehicle. The system is designed with three

primary Booster Coil pads and one secondary pad on the vehicle.

The adaptive mesh generated is as shown in Fig. 6.3. Two 20 m long test lines (1 and

3) are used on either side of the system, 10 m away from the center of the primary pad.

The second test line is setup between the primary and secondary pads, where the highest

magnetic field is expected. The leakage magnetic field is measured on the test lines to

satisfy CISPR 11 limits in the 79 - 90 kHz range of frequencies.

Prior works in [110] explore the concept of modeling leakage magnetic fields and com-

pare simulation and hardware results. The results show a good match between hardware

and simulation results. Three different boundary conditions are considered in [110]. These
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Fig. 6.2: Image of Booster Coil pads modeled in ANSYS.

Fig. 6.3: Adaptive meshing across a test plane showing the mesh shape.
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(a)

(b)

Fig. 6.4: Plots showing leakage magnetic field along a) test lines 1 and b) test line 3.

are as follows:

• Open-air test site (OATS)

• Semi-anechoic chamber 1 (SAC1)

• Semi-anechoic chamber 2 (SAC2)

The designed Booster Coil model is tested using the three different boundary conditions

and the results are presented in Fig. 6.4 and Fig. 6.5.

6.4.2 LTSpice Model

An LTSpice simulation is developed to obtain accurate amplitude and phase informa-

tion of the current excitations of the primary and secondary coils. This information is then

used in the ANSYS simulation to obtain accurate field data. The LTSpice simulation is
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Fig. 6.5: Plot showing leakage magnetic field along the test line 2

Fig. 6.6: LTSpice simulation used to obtain the amplitude and phase of the current exci-
tations.

shown in Fig. 6.6. The LTSpice model shows two primary pads and one secondary pad to

model the system behavior at the transition zone between two primary pads. The coupling

and self-inductance data is obtained from the FEM model simulated in ANSYS Maxwell.

6.5 Methods to Reduce Leakage Magnetic Field

Various shielding methods can be used to reduce leakage magnetic field in WPT sys-

tems. Shielding of leakage fields can be achieved by providing a lower reluctance path for
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magnetic flux or by generating opposing fields to cancel the field generated by the WPT

system. Depending on whether external excitation is used or not, shielding methods can be

classified as passive or active shielding.

6.5.1 Passive Shielding

Passive shielding methods do not require external excitation and can be implemented

in the following ways

• Metal shielding

• Ferrite shielding

• Shorted loop of wire

The passive shielding methods have a significant impact in low power systems, but their

effectiveness is limited when there is a large air-gap between the primary and secondary

pads. In the present example, an active shielding method is considered due to the high

power level.

6.5.2 Active Shielding

Active shielding refers to those methods which require external excitation to generate

opposing magnetic fields to counter the leakage magnetic field. Active shielding in WPT

systems can be achieved by adding cancellation coils adjacent to the primary or secondary

coils to create opposing fields [111].

The cancellation coils used to reduce the EM fields generated by the main coils in the

system also generate their own EM fields. This is also an important aspect to consider while

developing an active EM field cancellation system.

6.5.3 Simulation Results

To evaluate the effectiveness of active shielding with cancellation coils, the booster coil

system resonant network is tuned to achieve 30 kW of power transfer while the shielding
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(a)

(b)

(c)

Fig. 6.7: ANSYS model with the receiver in a) position 1 b) position 2 and c) position 3.

methods are varied. The worst case position for leakage field is chosen as the baseline

simulation. Three different positions of the secondary pad are evaluated to measure the

leakage field and identify the worst case leakage field. The three positions are shown in

Fig. 6.7. Providing adequate shielding in the worst case scenario ensures compliance with

the CISPR 11 limits in the other scenarios as well.

The magnetic fields in each of the three secondary pad positions are plotted in Fig. 6.8.

The lower limit of the scale in Fig. 6.10 corresponds to the CISPR 11 limit of 82.8 dBµA/m.
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(a)

(b)

(c)

Fig. 6.8: Leakage field comparison on test plane with receiver pad in a) position 1 b)
position 2 and c) position 3.
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Fig. 6.9: Active cancellation for primary and secondary pads.

This corresponds to a value of −42.8 dBµA/m on the ANSYS field plots. For convenience,

the outermost contour of the field plots is set to this limit value. The white regions on the

contour plot represent the regions where the CISPR 11 limits are satisfied. The green boxes

represent the meshing zone used to improve resolution of the results along test line 1 and

test line 3.

The 100 mm misaligned condition when the secondary pad is located in between the two

primary pads (transition zone) is observed to have higher leakage magnetic fields compared

to other positions as seen in Fig. 6.8c. It is observed that the magnetic field exceeds the limit

on test line 1. This scenario is considered the baseline case with no EM field cancellation

methods. The three cases considered for comparison are as follows:

• No cancellation coils, 100 mm misalignment and transition zone (baseline case)

• Active cancellation coils, baseline case and phase-shift control of the full bridge in-

verter

• Active cancellation coils, baseline case and DC-DC control of the full bridge inverter

Active shielding of magnetic fields in the system is achieved by using additional can-

cellation coils on either side of the primary and secondary coils. An image of the active
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(a)

(b)

(c)

Fig. 6.10: Leakage field comparison on test plane with a) no cancellation b) active cancel-
lation and phase-shift control c) active cancellation and DC-DC control.



111

Table 6.3: Summary of how system attributes are affected by shielding methods.

Parameter Baseline sim-
ulation (no
cancellation)

Active cancella-
tion (Phase shift
control)

Active cancel-
lation (DC-DC
control)

Primary inductance (µH) 402.39 405 405
Secondary inductance
(µH)

41.71 46 46

Coupling coefficient (at
the transition zone)

0.048 0.067 0.067

Primary current
(ampere-turns)

711 560 470

Secondary current
(ampere-turns)

455 455 455

Primary booster current
(ampere-turns)

427 336 282

Primary cancellation cur-
rent (ampere-turns)

NA 50 50

Secondary cancellation
current (ampere-turns)

NA 100 100

DC link voltage (V) 600 600 420
Phase shift angle (◦) 170 110 170

cancellation coils (yellow) can be seen in Fig. 6.9. With the addition of these extra coils,

there is a change in system coupling coefficient and self-inductance, this results in a higher

power transfer level than required. Hence the power level needs to be regulated for a fair

comparison. In practice, this can be achieved either by phase-shift control of the inverter

or adjusting the input DC link voltage using a front-end DC/DC converter. The system

parameters with each of the three cases are presented in Table 6.3. The magnetic field

contour plots of the simulation analysis are shown in Fig. 6.10.

6.5.4 Summary

This chapter discusses the compliance requirements for WPT systems based on the

CISPR 11 standard and a method of active cancellation is presented to reduce the leakage

magnetic fields generated by a booster coil pad.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This dissertation presents details on the different practical aspects of implementing

dynamic wireless power transfer systems. The design of a 50 kW concrete-embedded trans-

mitter pad is presented and multiple prototypes are constructed and tested. 56 kW of power

transfer is demonstrated over a coil-to-coil air-gap of 203.2 mm at 93% DC-DC efficiency.

This allows for additional pavement surfacing with materials such as asphalt. Pavement-

embedded transmitter pads involve additional thermal and structural challenges. Several

design modifications and considerations are presented in this dissertation. Test results from

the thermal and structural tests are also included for reference. The tests indicate that

the DWPT hardware is still functional after several loading cycles emulating heavy-duty

vehicular traffic. The design effort also focused on simplifying the pad design, thereby re-

ducing construction complexity. The proposed pad design procedure also supports the use

of existing construction methods and materials.

To improve the utilization of DWPT hardware and make it economically viable, dif-

ferent vehicle classes must be able to receive adequate power from the same transmitter

hardware. The proposed solution to tackle this problem is the use of multi-pad receivers.

The design of a scaled-down 30 kW multi-pad receiver system is presented. A three-pad

receiver is mounted to the chassis of an electric SUV and interfaced with a battery pack

inside the vehicle. Three transmitter pads in a roadway test bed are used to transfer power

to the three-pad receiver. The receiver is designed from three Z3 standard circular pads

specified in the SAE J2954 standard, each rated to 11 kVA. Series and parallel connections

for multi-pad receivers are evaluated and a series connected three-pad receiver is designed to

operate at 30 kW. Hardware design and experimental results show dynamic wireless power



113

transfer at vehicle speeds upto 22 mph.

A method of digital twin modeling for the wireless charging pads is also presented in this

dissertation. Detailed modeling workflow including the development of FEM pad models

and circuit simulation models in PLECS and LTSpice are presented. The modeling method

provides a platform for further research on evaluating the controls and system dynamics for

future DWPT work.

7.2 Future Work

Future research in the field of in-motion charging of EVs is required in the areas of

scalable manufacturing of pavement-DWPT systems, vehicle-to-vehicle (V2V), vehicle-to-

infrastructure (V2I) and vehicle-to-grid (V2G) communication protocols and better stan-

dardization of both static and dynamic wireless charging technologies for EVs. The devel-

opment of the test bed at Utah State University and testing of roadway embedded power

electronics is expected to provide more insight into future research requirements.

Another aspect of DWPT technologies essential for real world deployment is the com-

munication and synchronization between adjacent transmitter pads and corresponding elec-

tronics. While this is currently achieved using fiber optic cable, a shift to wireless synchro-

nization between the transmitter pads can help achieve greater modularity in the charging

infrastructure.
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