Inflatable Antenna

Project

Inflatable antennas have been extensively researched for years.
- NASA's Inflatable Antenna Experiment (1996)
- Cubic's Ground Antenna Transmit and Receive (GATR) (2008)

The inflatable antenna presented here is unlike many inflatable antennas.
- Omni-directional
- Miniature
- Single-band (2.4 GHz)
- Folds

The design may be useful for consumers.
- Increased Wi-Fi / Bluetooth range on computers
- Efficient design reduces cost

System

Primary system components and their roles:
- Inflatable Antenna (transmit/receive RF signal)
- USB Dongle (translate RF/Digital to Digital/RF)
- Computer (transmit/receive digital signal)
- Air Compressor (antenna deployment)
- Battery/AC Power Adapter (primary power sources)

Methods

Monopole antenna design was chosen.
- Omni-directional
- Deployable ground plane

A monopole has a radiation resistance of 75 Ω.
- Implies 1.5 VSWR when connected to a 50 Ω transmission line, which is reasonable for a commercial, low-cost product. No matching circuit means a lower price point for the consumer.

There are several advantages of the ground plane.
- Protects from SMA radiation
- Improves the gain of the monopole
- Aluminum foil folds, allowing collapse and expansion of the inflatable antenna

The ground plane expands as the balloon pulls it upward, then deflates and shrinks for smaller storage space.

Conclusion

The Inflatable Antenna succeeds in providing a prototype for a low-price expandable antenna for consumer use.
- 97% efficiency shows effectiveness of the antenna
- Significant difference in linear size between collapsed and deployed balloon

Future research has many directions.
- More efficient deployment systems
- More collapsible and/or more rigid designs
- Finding new applications for inflatable antennas

Special thanks to Dr. Reyhan Baktur and Dr. Donald Cripps as well as family and friends for consistent support